Many categorical frameworks have been proposed to formalize the idea of gluing Petri nets with each other. Such frameworks model net gluings in terms of sharing of resources or synchronization of transitions. Interpretations given to these gluings are more or less satisfactory when we consider Petri nets with a semantics attached to them. In this work, we define a framework to compose Petri nets together in such a way that their semantics is respected. In addition to this, we show how our framework generalizes the previously defined ones.
When multiple models are considered in regression problems, the model averaging method can be used to weigh and integrate the models. In the present study, we examined how the goodness-of-prediction of the estimator depends on the dimensionality of explanatory variables when using a generalization of the model averaging method in a linear model. We specifically considered the case of high-dimensional explanatory variables, with multiple linear models deployed for subsets of these variables. Consequently, we derived the optimal weights that yield the best predictions. we also observe that the double-descent phenomenon occurs in the model averaging estimator. Furthermore, we obtained theoretical results by adapting methods such as the random forest to linear regression models. Finally, we conducted a practical verification through numerical experiments.
Long-term outcomes of experimental evaluations are necessarily observed after long delays. We develop semiparametric methods for combining the short-term outcomes of experiments with observational measurements of short-term and long-term outcomes, in order to estimate long-term treatment effects. We characterize semiparametric efficiency bounds for various instances of this problem. These calculations facilitate the construction of several estimators. We analyze the finite-sample performance of these estimators with a simulation calibrated to data from an evaluation of the long-term effects of a poverty alleviation program.
As set systems, hypergraphs are omnipresent and have various representations ranging from Euler and Venn diagrams to contact representations. In a geometric representation of a hypergraph $H=(V,E)$, each vertex $v\in V$ is associated with a point $p_v\in \mathbb{R}^d$ and each hyperedge $e\in E$ is associated with a connected set $s_e\subset \mathbb{R}^d$ such that $\{p_v\mid v\in V\}\cap s_e=\{p_v\mid v\in e\}$ for all $e\in E$. We say that a given hypergraph $H$ is representable by some (infinite) family $F$ of sets in $\mathbb{R}^d$, if there exist $P\subset \mathbb{R}^d$ and $S \subseteq F$ such that $(P,S)$ is a geometric representation of $H$. For a family F, we define RECOGNITION(F) as the problem to determine if a given hypergraph is representable by F. It is known that the RECOGNITION problem is $\exists\mathbb{R}$-hard for halfspaces in $\mathbb{R}^d$. We study the families of translates of balls and ellipsoids in $\mathbb{R}^d$, as well as of other convex sets, and show that their RECOGNITION problems are also $\exists\mathbb{R}$-complete. This means that these recognition problems are equivalent to deciding whether a multivariate system of polynomial equations with integer coefficients has a real solution.
Optimal packing of objects in containers is a critical problem in various real-life and industrial applications. This paper investigates the two-dimensional packing of convex polygons without rotations, where only translations are allowed. We study different settings depending on the type of containers used, including minimizing the number of containers or the size of the container based on an objective function. Building on prior research in the field, we develop polynomial-time algorithms with improved approximation guarantees upon the best-known results by Alt, de Berg and Knauer, as well as Aamand, Abrahamsen, Beretta and Kleist, for problems such as Polygon Area Minimization, Polygon Perimeter Minimization, Polygon Strip Packing, and Polygon Bin Packing. Our approach utilizes a sequence of object transformations that allows sorting by height and orientation, thus enhancing the effectiveness of shelf packing algorithms for polygon packing problems. In addition, we present efficient approximation algorithms for special cases of the Polygon Bin Packing problem, progressing toward solving an open question concerning an O(1)-approximation algorithm for arbitrary polygons.
Deep neural networks (DNNs) are becoming increasingly important components of software, and are considered the state-of-the-art solution for a number of problems, such as image recognition. However, DNNs are far from infallible, and incorrect behavior of DNNs can have disastrous real-world consequences. This paper addresses the problem of architecture-preserving V-polytope provable repair of DNNs. A V-polytope defines a convex bounded polytope using its vertex representation. V-polytope provable repair guarantees that the repaired DNN satisfies the given specification on the infinite set of points in the given V-polytope. An architecture-preserving repair only modifies the parameters of the DNN, without modifying its architecture. The repair has the flexibility to modify multiple layers of the DNN, and runs in polynomial time. It supports DNNs with activation functions that have some linear pieces, as well as fully-connected, convolutional, pooling and residual layers. To the best our knowledge, this is the first provable repair approach that has all of these features. We implement our approach in a tool called APRNN. Using MNIST, ImageNet, and ACAS Xu DNNs, we show that it has better efficiency, scalability, and generalization compared to PRDNN and REASSURE, prior provable repair methods that are not architecture preserving.
Large Language Models (LLMs) have shown excellent generalization capabilities that have led to the development of numerous models. These models propose various new architectures, tweaking existing architectures with refined training strategies, increasing context length, using high-quality training data, and increasing training time to outperform baselines. Analyzing new developments is crucial for identifying changes that enhance training stability and improve generalization in LLMs. This survey paper comprehensively analyses the LLMs architectures and their categorization, training strategies, training datasets, and performance evaluations and discusses future research directions. Moreover, the paper also discusses the basic building blocks and concepts behind LLMs, followed by a complete overview of LLMs, including their important features and functions. Finally, the paper summarizes significant findings from LLM research and consolidates essential architectural and training strategies for developing advanced LLMs. Given the continuous advancements in LLMs, we intend to regularly update this paper by incorporating new sections and featuring the latest LLM models.
Graph neural networks (GNNs) have been demonstrated to be a powerful algorithmic model in broad application fields for their effectiveness in learning over graphs. To scale GNN training up for large-scale and ever-growing graphs, the most promising solution is distributed training which distributes the workload of training across multiple computing nodes. However, the workflows, computational patterns, communication patterns, and optimization techniques of distributed GNN training remain preliminarily understood. In this paper, we provide a comprehensive survey of distributed GNN training by investigating various optimization techniques used in distributed GNN training. First, distributed GNN training is classified into several categories according to their workflows. In addition, their computational patterns and communication patterns, as well as the optimization techniques proposed by recent work are introduced. Second, the software frameworks and hardware platforms of distributed GNN training are also introduced for a deeper understanding. Third, distributed GNN training is compared with distributed training of deep neural networks, emphasizing the uniqueness of distributed GNN training. Finally, interesting issues and opportunities in this field are discussed.
Residual networks (ResNets) have displayed impressive results in pattern recognition and, recently, have garnered considerable theoretical interest due to a perceived link with neural ordinary differential equations (neural ODEs). This link relies on the convergence of network weights to a smooth function as the number of layers increases. We investigate the properties of weights trained by stochastic gradient descent and their scaling with network depth through detailed numerical experiments. We observe the existence of scaling regimes markedly different from those assumed in neural ODE literature. Depending on certain features of the network architecture, such as the smoothness of the activation function, one may obtain an alternative ODE limit, a stochastic differential equation or neither of these. These findings cast doubts on the validity of the neural ODE model as an adequate asymptotic description of deep ResNets and point to an alternative class of differential equations as a better description of the deep network limit.
We describe the new field of mathematical analysis of deep learning. This field emerged around a list of research questions that were not answered within the classical framework of learning theory. These questions concern: the outstanding generalization power of overparametrized neural networks, the role of depth in deep architectures, the apparent absence of the curse of dimensionality, the surprisingly successful optimization performance despite the non-convexity of the problem, understanding what features are learned, why deep architectures perform exceptionally well in physical problems, and which fine aspects of an architecture affect the behavior of a learning task in which way. We present an overview of modern approaches that yield partial answers to these questions. For selected approaches, we describe the main ideas in more detail.
It is important to detect anomalous inputs when deploying machine learning systems. The use of larger and more complex inputs in deep learning magnifies the difficulty of distinguishing between anomalous and in-distribution examples. At the same time, diverse image and text data are available in enormous quantities. We propose leveraging these data to improve deep anomaly detection by training anomaly detectors against an auxiliary dataset of outliers, an approach we call Outlier Exposure (OE). This enables anomaly detectors to generalize and detect unseen anomalies. In extensive experiments on natural language processing and small- and large-scale vision tasks, we find that Outlier Exposure significantly improves detection performance. We also observe that cutting-edge generative models trained on CIFAR-10 may assign higher likelihoods to SVHN images than to CIFAR-10 images; we use OE to mitigate this issue. We also analyze the flexibility and robustness of Outlier Exposure, and identify characteristics of the auxiliary dataset that improve performance.