亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Optimal designs minimize the number of experimental runs (samples) needed to accurately estimate model parameters, resulting in algorithms that, for instance, efficiently minimize parameter estimate variance. Governed by knowledge of past observations, adaptive approaches adjust sampling constraints online as model parameter estimates are refined, continually maximizing expected information gained or variance reduced. We apply adaptive Bayesian inference to estimate transition rates of Markov chains, a common class of models for stochastic processes in nature. Unlike most previous studies, our sequential Bayesian optimal design is updated with each observation, and can be simply extended beyond two-state models to birth-death processes and multistate models. By iteratively finding the best time to obtain each sample, our adaptive algorithm maximally reduces variance, resulting in lower overall error in ground truth parameter estimates across a wide range of Markov chain parameterizations and conformations.

相關內容

Class-Incremental Learning updates a deep classifier with new categories while maintaining the previously observed class accuracy. Regularizing the neural network weights is a common method to prevent forgetting previously learned classes while learning novel ones. However, existing regularizers use a constant magnitude throughout the learning sessions, which may not reflect the varying levels of difficulty of the tasks encountered during incremental learning. This study investigates the necessity of adaptive regularization in Class-Incremental Learning, which dynamically adjusts the regularization strength according to the complexity of the task at hand. We propose a Bayesian Optimization-based approach to automatically determine the optimal regularization magnitude for each learning task. Our experiments on two datasets via two regularizers demonstrate the importance of adaptive regularization for achieving accurate and less forgetful visual incremental learning.

Classical asymptotic theory for statistical inference usually involves calibrating a statistic by fixing the dimension $d$ while letting the sample size $n$ increase to infinity. Recently, much effort has been dedicated towards understanding how these methods behave in high-dimensional settings, where $d$ and $n$ both increase to infinity together. This often leads to different inference procedures, depending on the assumptions about the dimensionality, leaving the practitioner in a bind: given a dataset with 100 samples in 20 dimensions, should they calibrate by assuming $n \gg d$, or $d/n \approx 0.2$? This paper considers the goal of dimension-agnostic inference; developing methods whose validity does not depend on any assumption on $d$ versus $n$. We introduce an approach that uses variational representations of existing test statistics along with sample splitting and self-normalization to produce a refined test statistic with a Gaussian limiting distribution, regardless of how $d$ scales with $n$. The resulting statistic can be viewed as a careful modification of degenerate U-statistics, dropping diagonal blocks and retaining off-diagonal blocks. We exemplify our technique for some classical problems including one-sample mean and covariance testing, and show that our tests have minimax rate-optimal power against appropriate local alternatives. In most settings, our cross U-statistic matches the high-dimensional power of the corresponding (degenerate) U-statistic up to a $\sqrt{2}$ factor.

Growth curves are commonly used in modeling aimed at crop yield prediction. Fitting such curves often depends on availability of detailed observations, such as individual grape bunch weight or individual apple weight. However, in practice, aggregated weights (such as a bucket of grape bunches or apples) are available instead. While treating such bucket averages as if they were individual observations is tempting, it may introduce bias particularly with respect to population variance. In this paper we provide an elegant solution which enables estimation of individual weights using Dirichlet priors within Bayesian inferential framework.

Spiking Neural Networks (SNNs) can do inference with low power consumption due to their spike sparsity. ANN-SNN conversion is an efficient way to achieve deep SNNs by converting well-trained Artificial Neural Networks (ANNs). However, the existing methods commonly use constant threshold for conversion, which prevents neurons from rapidly delivering spikes to deeper layers and causes high time delay. In addition, the same response for different inputs may result in information loss during the information transmission. Inspired by the biological model mechanism, we propose a multi-stage adaptive threshold (MSAT). Specifically, for each neuron, the dynamic threshold varies with firing history and input properties and is positively correlated with the average membrane potential and negatively correlated with the rate of depolarization. The self-adaptation to membrane potential and input allows a timely adjustment of the threshold to fire spike faster and transmit more information. Moreover, we analyze the Spikes of Inactivated Neurons error which is pervasive in early time steps and propose spike confidence accordingly as a measurement of confidence about the neurons that correctly deliver spikes. We use such spike confidence in early time steps to determine whether to elicit spike to alleviate this error. Combined with the proposed method, we examine the performance on non-trivial datasets CIFAR-10, CIFAR-100, and ImageNet. We also conduct sentiment classification and speech recognition experiments on the IDBM and Google speech commands datasets respectively. Experiments show near-lossless and lower latency ANN-SNN conversion. To the best of our knowledge, this is the first time to build a biologically inspired multi-stage adaptive threshold for converted SNN, with comparable performance to state-of-the-art methods while improving energy efficiency.

Our goal is to develop a general strategy to decompose a random variable $X$ into multiple independent random variables, without sacrificing any information about unknown parameters. A recent paper showed that for some well-known natural exponential families, $X$ can be "thinned" into independent random variables $X^{(1)}, \ldots, X^{(K)}$, such that $X = \sum_{k=1}^K X^{(k)}$. In this paper, we generalize their procedure by relaxing this summation requirement and simply asking that some known function of the independent random variables exactly reconstruct $X$. This generalization of the procedure serves two purposes. First, it greatly expands the families of distributions for which thinning can be performed. Second, it unifies sample splitting and data thinning, which on the surface seem to be very different, as applications of the same principle. This shared principle is sufficiency. We use this insight to perform generalized thinning operations for a diverse set of families.

Latent confounding has been a long-standing obstacle for causal reasoning from observational data. One popular approach is to model the data using acyclic directed mixed graphs (ADMGs), which describe ancestral relations between variables using directed and bidirected edges. However, existing methods using ADMGs are based on either linear functional assumptions or a discrete search that is complicated to use and lacks computational tractability for large datasets. In this work, we further extend the existing body of work and develop a novel gradient-based approach to learning an ADMG with non-linear functional relations from observational data. We first show that the presence of latent confounding is identifiable under the assumptions of bow-free ADMGs with non-linear additive noise models. With this insight, we propose a novel neural causal model based on autoregressive flows for ADMG learning. This not only enables us to determine complex causal structural relationships behind the data in the presence of latent confounding, but also estimate their functional relationships (hence treatment effects) simultaneously. We further validate our approach via experiments on both synthetic and real-world datasets, and demonstrate the competitive performance against relevant baselines.

Despite attractive theoretical guarantees and practical successes, Predictive Interval (PI) given by Conformal Prediction (CP) may not reflect the uncertainty of a given model. This limitation arises from CP methods using a constant correction for all test points, disregarding their individual uncertainties, to ensure coverage properties. To address this issue, we propose using a Quantile Regression Forest (QRF) to learn the distribution of nonconformity scores and utilizing the QRF's weights to assign more importance to samples with residuals similar to the test point. This approach results in PI lengths that are more aligned with the model's uncertainty. In addition, the weights learnt by the QRF provide a partition of the features space, allowing for more efficient computations and improved adaptiveness of the PI through groupwise conformalization. Our approach enjoys an assumption-free finite sample marginal and training-conditional coverage, and under suitable assumptions, it also ensures conditional coverage. Our methods work for any nonconformity score and are available as a Python package. We conduct experiments on simulated and real-world data that demonstrate significant improvements compared to existing methods.

State-space models (SSMs) are a common tool for modeling multi-variate discrete-time signals. The linear-Gaussian (LG) SSM is widely applied as it allows for a closed-form solution at inference, if the model parameters are known. However, they are rarely available in real-world problems and must be estimated. Promoting sparsity of these parameters favours both interpretability and tractable inference. In this work, we propose GraphIT, a majorization-minimization (MM) algorithm for estimating the linear operator in the state equation of an LG-SSM under sparse prior. A versatile family of non-convex regularization potentials is proposed. The MM method relies on tools inherited from the expectation-maximization methodology and the iterated reweighted-l1 approach. In particular, we derive a suitable convex upper bound for the objective function, that we then minimize using a proximal splitting algorithm. Numerical experiments illustrate the benefits of the proposed inference technique.

When data is collected in an adaptive manner, even simple methods like ordinary least squares can exhibit non-normal asymptotic behavior. As an undesirable consequence, hypothesis tests and confidence intervals based on asymptotic normality can lead to erroneous results. We propose a family of online debiasing estimators to correct these distributional anomalies in least squares estimation. Our proposed methods take advantage of the covariance structure present in the dataset and provide sharper estimates in directions for which more information has accrued. We establish an asymptotic normality property for our proposed online debiasing estimators under mild conditions on the data collection process and provide asymptotically exact confidence intervals. We additionally prove a minimax lower bound for the adaptive linear regression problem, thereby providing a baseline by which to compare estimators. There are various conditions under which our proposed estimators achieve the minimax lower bound. We demonstrate the usefulness of our theory via applications to multi-armed bandit, autoregressive time series estimation, and active learning with exploration.

This paper focuses on the expected difference in borrower's repayment when there is a change in the lender's credit decisions. Classical estimators overlook the confounding effects and hence the estimation error can be magnificent. As such, we propose another approach to construct the estimators such that the error can be greatly reduced. The proposed estimators are shown to be unbiased, consistent, and robust through a combination of theoretical analysis and numerical testing. Moreover, we compare the power of estimating the causal quantities between the classical estimators and the proposed estimators. The comparison is tested across a wide range of models, including linear regression models, tree-based models, and neural network-based models, under different simulated datasets that exhibit different levels of causality, different degrees of nonlinearity, and different distributional properties. Most importantly, we apply our approaches to a large observational dataset provided by a global technology firm that operates in both the e-commerce and the lending business. We find that the relative reduction of estimation error is strikingly substantial if the causal effects are accounted for correctly.

北京阿比特科技有限公司