亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Many anatomical structures can be described by surface or volume meshes. Machine learning is a promising tool to extract information from these 3D models. However, high-fidelity meshes often contain hundreds of thousands of vertices, which creates unique challenges in building deep neural network architectures. Furthermore, patient-specific meshes may not be canonically aligned which limits the generalisation of machine learning algorithms. We propose LaB-GATr, a transfomer neural network with geometric tokenisation that can effectively learn with large-scale (bio-)medical surface and volume meshes through sequence compression and interpolation. Our method extends the recently proposed geometric algebra transformer (GATr) and thus respects all Euclidean symmetries, i.e. rotation, translation and reflection, effectively mitigating the problem of canonical alignment between patients. LaB-GATr achieves state-of-the-art results on three tasks in cardiovascular hemodynamics modelling and neurodevelopmental phenotype prediction, featuring meshes of up to 200,000 vertices. Our results demonstrate that LaB-GATr is a powerful architecture for learning with high-fidelity meshes which has the potential to enable interesting downstream applications. Our implementation is publicly available.

相關內容

 Surface 是微軟公司( )旗下一系列使用 Windows 10(早期為 Windows 8.X)操作系統的電腦產品,目前有 Surface、Surface Pro 和 Surface Book 三個系列。 2012 年 6 月 18 日,初代 Surface Pro/RT 由時任微軟 CEO 史蒂夫·鮑爾默發布于在洛杉磯舉行的記者會,2012 年 10 月 26 日上市銷售。

Deep learning methods are increasingly becoming instrumental as modeling tools in computational neuroscience, employing optimality principles to build bridges between neural responses and perception or behavior. Developing models that adequately represent uncertainty is however challenging for deep learning methods, which often suffer from calibration problems. This constitutes a difficulty in particular when modeling cortical circuits in terms of Bayesian inference, beyond single point estimates such as the posterior mean or the maximum a posteriori. In this work we systematically studied uncertainty representations in latent representations of variational auto-encoders (VAEs), both in a perceptual task from natural images and in two other canonical tasks of computer vision, finding a poor alignment between uncertainty and informativeness or ambiguities in the images. We next showed how a novel approach which we call explaining-away variational auto-encoders (EA-VAEs), fixes these issues, producing meaningful reports of uncertainty in a variety of scenarios, including interpolation, image corruption, and even out-of-distribution detection. We show EA-VAEs may prove useful both as models of perception in computational neuroscience and as inference tools in computer vision.

The use of machine learning algorithms to investigate phase transitions in physical systems is a valuable way to better understand the characteristics of these systems. Neural networks have been used to extract information of phases and phase transitions directly from many-body configurations. However, one limitation of neural networks is that they require the definition of the model architecture and parameters previous to their application, and such determination is itself a difficult problem. In this paper, we investigate for the first time the relationship between the accuracy of neural networks for information of phases and the network configuration (that comprises the architecture and hyperparameters). We formulate the phase analysis as a regression task, address the question of generating data that reflects the different states of the physical system, and evaluate the performance of neural architecture search for this task. After obtaining the optimized architectures, we further implement smart data processing and analytics by means of neuron coverage metrics, assessing the capability of these metrics to estimate phase transitions. Our results identify the neuron coverage metric as promising for detecting phase transitions in physical systems.

Training spiking neural networks to approximate complex functions is essential for studying information processing in the brain and neuromorphic computing. Yet, the binary nature of spikes constitutes a challenge for direct gradient-based training. To sidestep this problem, surrogate gradients have proven empirically successful, but their theoretical foundation remains elusive. Here, we investigate the relation of surrogate gradients to two theoretically well-founded approaches. On the one hand, we consider smoothed probabilistic models, which, due to lack of support for automatic differentiation, are impractical for training deep spiking neural networks, yet provide gradients equivalent to surrogate gradients in single neurons. On the other hand, we examine stochastic automatic differentiation, which is compatible with discrete randomness but has never been applied to spiking neural network training. We find that the latter provides the missing theoretical basis for surrogate gradients in stochastic spiking neural networks. We further show that surrogate gradients in deterministic networks correspond to a particular asymptotic case and numerically confirm the effectiveness of surrogate gradients in stochastic multi-layer spiking neural networks. Finally, we illustrate that surrogate gradients are not conservative fields and, thus, not gradients of a surrogate loss. Our work provides the missing theoretical foundation for surrogate gradients and an analytically well-founded solution for end-to-end training of stochastic spiking neural networks.

Data-driven approaches have revolutionized scientific research. Machine learning and statistical analysis are commonly utilized in this type of research. Despite their widespread use, these methodologies differ significantly in their techniques and objectives. Few studies have utilized a consistent dataset to demonstrate these differences within the social sciences, particularly in language and cognitive sciences. This study leverages the Buckeye Speech Corpus to illustrate how both machine learning and statistical analysis are applied in data-driven research to obtain distinct insights. This study significantly enhances our understanding of the diverse approaches employed in data-driven strategies.

Tree-based methods such as Random Forests are learning algorithms that have become an integral part of the statistical toolbox. The last decade has shed some light on theoretical properties such as their consistency for regression tasks. However, the usual proofs assume normal error terms as well as an additive regression function and are rather technical. We overcome these issues by introducing a simple and catchy technique for proving consistency under quite general assumptions. To this end, we introduce a new class of naive trees, which do the subspacing completely at random and independent of the data. We then give a direct proof of their consistency. Using them to bound the error of more complex tree-based approaches such as univariate and multivariate CARTs, Extra Randomized Trees, or Random Forests, we deduce the consistency of all of them. Since naive trees appear to be too simple for actual application, we further analyze their finite sample properties in a simulation and small benchmark study. We find a slow convergence speed and a rather poor predictive performance. Based on these results, we finally discuss to what extent consistency proofs help to justify the application of complex learning algorithms.

Deep learning is dramatically transforming the field of medical imaging and radiology, enabling the identification of pathologies in medical images, including computed tomography (CT) and X-ray scans. However, the performance of deep learning models, particularly in segmentation tasks, is often limited by the need for extensive annotated datasets. To address this challenge, the capabilities of weakly supervised semantic segmentation are explored through the lens of Explainable AI and the generation of counterfactual explanations. The scope of this research is development of a novel counterfactual inpainting approach (COIN) that flips the predicted classification label from abnormal to normal by using a generative model. For instance, if the classifier deems an input medical image X as abnormal, indicating the presence of a pathology, the generative model aims to inpaint the abnormal region, thus reversing the classifier's original prediction label. The approach enables us to produce precise segmentations for pathologies without depending on pre-existing segmentation masks. Crucially, image-level labels are utilized, which are substantially easier to acquire than creating detailed segmentation masks. The effectiveness of the method is demonstrated by segmenting synthetic targets and actual kidney tumors from CT images acquired from Tartu University Hospital in Estonia. The findings indicate that COIN greatly surpasses established attribution methods, such as RISE, ScoreCAM, and LayerCAM, as well as an alternative counterfactual explanation method introduced by Singla et al. This evidence suggests that COIN is a promising approach for semantic segmentation of tumors in CT images, and presents a step forward in making deep learning applications more accessible and effective in healthcare, where annotated data is scarce.

While computer modeling and simulation are crucial for understanding scientometrics, their practical use in literature remains somewhat limited. In this study, we establish a joint coauthorship and citation network using preferential attachment. As papers get published, we update the coauthorship network based on each paper's author list, representing the collaborative team behind it. This team is formed considering the number of collaborations each author has, and we introduce new authors at a fixed probability, expanding the coauthorship network. Simultaneously, as each paper cites a specific number of references, we add an equivalent number of citations to the citation network upon publication. The likelihood of a paper being cited depends on its existing citations, fitness value, and age. Then we calculate the journal impact factor and h-index, using them as examples of scientific impact indicators. After thorough validation, we conduct case studies to analyze the impact of different parameters on the journal impact factor and h-index. The findings reveal that increasing the reference number N or reducing the paper's lifetime {\theta} significantly boosts the journal impact factor and average h-index. On the other hand, enlarging the team size m without introducing new authors or decreasing the probability of newcomers p notably increases the average h-index. In conclusion, it is evident that various parameters influence scientific impact indicators, and their interpretation can be manipulated by authors. Thus, exploring the impact of these parameters and continually refining scientific impact indicators are essential. The modeling and simulation method serves as a powerful tool in this ongoing process, and the model can be easily extended to include other scientific impact indicators and scenarios.

Creating a dataset for training supervised machine learning algorithms can be a demanding task. This is especially true for medical image segmentation since one or more specialists are usually required for image annotation, and creating ground truth labels for just a single image can take up to several hours. In addition, it is paramount that the annotated samples represent well the different conditions that might affect the imaged tissues as well as possible changes in the image acquisition process. This can only be achieved by considering samples that are typical in the dataset as well as atypical, or even outlier, samples. We introduce VessMAP, a heterogeneous blood vessel segmentation dataset acquired by carefully sampling relevant images from a larger non-annotated dataset. A methodology was developed to select both prototypical and atypical samples from the base dataset, thus defining an assorted set of images that can be used for measuring the performance of segmentation algorithms on samples that are highly distinct from each other. To demonstrate the potential of the new dataset, we show that the validation performance of a neural network changes significantly depending on the splits used for training the network.

We derive information-theoretic generalization bounds for supervised learning algorithms based on the information contained in predictions rather than in the output of the training algorithm. These bounds improve over the existing information-theoretic bounds, are applicable to a wider range of algorithms, and solve two key challenges: (a) they give meaningful results for deterministic algorithms and (b) they are significantly easier to estimate. We show experimentally that the proposed bounds closely follow the generalization gap in practical scenarios for deep learning.

Graph representation learning for hypergraphs can be used to extract patterns among higher-order interactions that are critically important in many real world problems. Current approaches designed for hypergraphs, however, are unable to handle different types of hypergraphs and are typically not generic for various learning tasks. Indeed, models that can predict variable-sized heterogeneous hyperedges have not been available. Here we develop a new self-attention based graph neural network called Hyper-SAGNN applicable to homogeneous and heterogeneous hypergraphs with variable hyperedge sizes. We perform extensive evaluations on multiple datasets, including four benchmark network datasets and two single-cell Hi-C datasets in genomics. We demonstrate that Hyper-SAGNN significantly outperforms the state-of-the-art methods on traditional tasks while also achieving great performance on a new task called outsider identification. Hyper-SAGNN will be useful for graph representation learning to uncover complex higher-order interactions in different applications.

北京阿比特科技有限公司