亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

We propose cross-modal attentive connections, a new dynamic and effective technique for multimodal representation learning from wearable data. Our solution can be integrated into any stage of the pipeline, i.e., after any convolutional layer or block, to create intermediate connections between individual streams responsible for processing each modality. Additionally, our method benefits from two properties. First, it can share information uni-directionally (from one modality to the other) or bi-directionally. Second, it can be integrated into multiple stages at the same time to further allow network gradients to be exchanged in several touch-points. We perform extensive experiments on three public multimodal wearable datasets, WESAD, SWELL-KW, and CASE, and demonstrate that our method can effectively regulate and share information between different modalities to learn better representations. Our experiments further demonstrate that once integrated into simple CNN-based multimodal solutions (2, 3, or 4 modalities), our method can result in superior or competitive performance to state-of-the-art and outperform a variety of baseline uni-modal and classical multimodal methods.

相關內容

To enable artificial intelligence in providing empathetic services, multimodal Emotion Recognition in Conversation (ERC) plays an influential role in the field of human-computer interaction and conversational robotics. Multimodal data modeling is an up-and-coming research area in recent years, which is inspired by human multi-sensory integration capabilities. Up until now, there are few studies on multimodal-based conversational emotion recognition. Most of existing Multimodal ERC methods do not model cross-modal interactions and are incapable of extracting inter-modal complementary information. Several graph-based approaches claim to capture inter-modal complementary information, but it is difficult to obtain optimal solution using graph-based models due to the heterogeneity of multimodal data. In this work, we introduce a Graph and Attention-based Two-stage Multi-source Information Fusion (GA2MIF) approach for multimodal fusion. Our GA2MIF focuses on contextual modeling and cross-modal modeling leveraging Multi-head Directed Graph ATtention networks (MDGATs) and Multi-head Pairwise Cross-modal ATtention networks (MPCATs), respectively. Extensive experiments on two common datasets show that proposed GA2MIF can effectively capture intra-modal local and long-range contextual information as well as inter-modal complementary information, and outperforms existing State-Of-The-Art (SOTA) baselines by an absolute margin.

This paper presents our submission to the Multi-Task Learning (MTL) Challenge of the 4th Affective Behavior Analysis in-the-wild (ABAW) competition. Based on visual feature representations, we utilize three types of temporal encoder to capture the temporal context information in the video, including the transformer based encoder, LSTM based encoder and GRU based encoder. With the temporal context-aware representations, we employ multi-task framework to predict the valence, arousal, expression and AU values of the images. In addition, smoothing processing is applied to refine the initial valence and arousal predictions, and a model ensemble strategy is used to combine multiple results from different model setups. Our system achieves the performance of $1.742$ on MTL Challenge validation dataset.

Emotion recognition is involved in several real-world applications. With an increase in available modalities, automatic understanding of emotions is being performed more accurately. The success in Multimodal Emotion Recognition (MER), primarily relies on the supervised learning paradigm. However, data annotation is expensive, time-consuming, and as emotion expression and perception depends on several factors (e.g., age, gender, culture) obtaining labels with a high reliability is hard. Motivated by these, we focus on unsupervised feature learning for MER. We consider discrete emotions, and as modalities text, audio and vision are used. Our method, as being based on contrastive loss between pairwise modalities, is the first attempt in MER literature. Our end-to-end feature learning approach has several differences (and advantages) compared to existing MER methods: i) it is unsupervised, so the learning is lack of data labelling cost; ii) it does not require data spatial augmentation, modality alignment, large number of batch size or epochs; iii) it applies data fusion only at inference; and iv) it does not require backbones pre-trained on emotion recognition task. The experiments on benchmark datasets show that our method outperforms several baseline approaches and unsupervised learning methods applied in MER. Particularly, it even surpasses a few supervised MER state-of-the-art.

This paper illustrates our submission method to the fourth Affective Behavior Analysis in-the-Wild (ABAW) Competition. The method is used for the Multi-Task Learning Challenge. Instead of using only face information, we employ full information from a provided dataset containing face and the context around the face. We utilized the InceptionNet V3 model to extract deep features then we applied the attention mechanism to refine the features. After that, we put those features into the transformer block and multi-layer perceptron networks to get the final multiple kinds of emotion. Our model predicts arousal and valence, classifies the emotional expression and estimates the action units simultaneously. The proposed system achieves the performance of 0.917 on the MTL Challenge validation dataset.

In recent years, video instance segmentation (VIS) has been largely advanced by offline models, while online models gradually attracted less attention possibly due to their inferior performance. However, online methods have their inherent advantage in handling long video sequences and ongoing videos while offline models fail due to the limit of computational resources. Therefore, it would be highly desirable if online models can achieve comparable or even better performance than offline models. By dissecting current online models and offline models, we demonstrate that the main cause of the performance gap is the error-prone association between frames caused by the similar appearance among different instances in the feature space. Observing this, we propose an online framework based on contrastive learning that is able to learn more discriminative instance embeddings for association and fully exploit history information for stability. Despite its simplicity, our method outperforms all online and offline methods on three benchmarks. Specifically, we achieve 49.5 AP on YouTube-VIS 2019, a significant improvement of 13.2 AP and 2.1 AP over the prior online and offline art, respectively. Moreover, we achieve 30.2 AP on OVIS, a more challenging dataset with significant crowding and occlusions, surpassing the prior art by 14.8 AP. The proposed method won first place in the video instance segmentation track of the 4th Large-scale Video Object Segmentation Challenge (CVPR2022). We hope the simplicity and effectiveness of our method, as well as our insight into current methods, could shed light on the exploration of VIS models.

Music signals are difficult to interpret from their low-level features, perhaps even more than images: e.g. highlighting part of a spectrogram or an image is often insufficient to convey high-level ideas that are genuinely relevant to humans. In computer vision, concept learning was therein proposed to adjust explanations to the right abstraction level (e.g. detect clinical concepts from radiographs). These methods have yet to be used for MIR. In this paper, we adapt concept learning to the realm of music, with its particularities. For instance, music concepts are typically non-independent and of mixed nature (e.g. genre, instruments, mood), unlike previous work that assumed disentangled concepts. We propose a method to learn numerous music concepts from audio and then automatically hierarchise them to expose their mutual relationships. We conduct experiments on datasets of playlists from a music streaming service, serving as a few annotated examples for diverse concepts. Evaluations show that the mined hierarchies are aligned with both ground-truth hierarchies of concepts -- when available -- and with proxy sources of concept similarity in the general case.

Emotion Recognition in Conversation (ERC) plays a significant part in Human-Computer Interaction (HCI) systems since it can provide empathetic services. Multimodal ERC can mitigate the drawbacks of uni-modal approaches. Recently, Graph Neural Networks (GNNs) have been widely used in a variety of fields due to their superior performance in relation modeling. In multimodal ERC, GNNs are capable of extracting both long-distance contextual information and inter-modal interactive information. Unfortunately, since existing methods such as MMGCN directly fuse multiple modalities, redundant information may be generated and heterogeneous information may be lost. In this work, we present a directed Graph based Cross-modal Feature Complementation (GraphCFC) module that can efficiently model contextual and interactive information. GraphCFC alleviates the problem of heterogeneity gap in multimodal fusion by utilizing multiple subspace extractors and Pair-wise Cross-modal Complementary (PairCC) strategy. We extract various types of edges from the constructed graph for encoding, thus enabling GNNs to extract crucial contextual and interactive information more accurately when performing message passing. Furthermore, we design a GNN structure called GAT-MLP, which can provide a new unified network framework for multimodal learning. The experimental results on two benchmark datasets show that our GraphCFC outperforms the state-of-the-art (SOTA) approaches.

Recent advances in maximizing mutual information (MI) between the source and target have demonstrated its effectiveness in text generation. However, previous works paid little attention to modeling the backward network of MI (i.e., dependency from the target to the source), which is crucial to the tightness of the variational information maximization lower bound. In this paper, we propose Adversarial Mutual Information (AMI): a text generation framework which is formed as a novel saddle point (min-max) optimization aiming to identify joint interactions between the source and target. Within this framework, the forward and backward networks are able to iteratively promote or demote each other's generated instances by comparing the real and synthetic data distributions. We also develop a latent noise sampling strategy that leverages random variations at the high-level semantic space to enhance the long term dependency in the generation process. Extensive experiments based on different text generation tasks demonstrate that the proposed AMI framework can significantly outperform several strong baselines, and we also show that AMI has potential to lead to a tighter lower bound of maximum mutual information for the variational information maximization problem.

Automatic License Plate Recognition (ALPR) has been a frequent topic of research due to many practical applications. However, many of the current solutions are still not robust in real-world situations, commonly depending on many constraints. This paper presents a robust and efficient ALPR system based on the state-of-the-art YOLO object detection. The Convolutional Neural Networks (CNNs) are trained and fine-tuned for each ALPR stage so that they are robust under different conditions (e.g., variations in camera, lighting, and background). Specially for character segmentation and recognition, we design a two-stage approach employing simple data augmentation tricks such as inverted License Plates (LPs) and flipped characters. The resulting ALPR approach achieved impressive results in two datasets. First, in the SSIG dataset, composed of 2,000 frames from 101 vehicle videos, our system achieved a recognition rate of 93.53% and 47 Frames Per Second (FPS), performing better than both Sighthound and OpenALPR commercial systems (89.80% and 93.03%, respectively) and considerably outperforming previous results (81.80%). Second, targeting a more realistic scenario, we introduce a larger public dataset, called UFPR-ALPR dataset, designed to ALPR. This dataset contains 150 videos and 4,500 frames captured when both camera and vehicles are moving and also contains different types of vehicles (cars, motorcycles, buses and trucks). In our proposed dataset, the trial versions of commercial systems achieved recognition rates below 70%. On the other hand, our system performed better, with recognition rate of 78.33% and 35 FPS.

Most previous event extraction studies have relied heavily on features derived from annotated event mentions, thus cannot be applied to new event types without annotation effort. In this work, we take a fresh look at event extraction and model it as a grounding problem. We design a transferable neural architecture, mapping event mentions and types jointly into a shared semantic space using structural and compositional neural networks, where the type of each event mention can be determined by the closest of all candidate types . By leveraging (1)~available manual annotations for a small set of existing event types and (2)~existing event ontologies, our framework applies to new event types without requiring additional annotation. Experiments on both existing event types (e.g., ACE, ERE) and new event types (e.g., FrameNet) demonstrate the effectiveness of our approach. \textit{Without any manual annotations} for 23 new event types, our zero-shot framework achieved performance comparable to a state-of-the-art supervised model which is trained from the annotations of 500 event mentions.

北京阿比特科技有限公司