Policymaking for complex challenges such as pandemics necessitates the consideration of intricate implications across multiple domains and scales. Computational models can support policymaking, but a single model is often insufficient for such multidomain and scale challenges. Multi-models comprising several interacting computational models at different scales or relying on different modeling paradigms offer a potential solution. Such multi-models can be assembled from existing computational models (i.e., integrated modeling) or be designed conceptually as a whole before their computational implementation (i.e., integral modeling). Integral modeling is particularly valuable for novel policy problems, such as those faced in the early stages of a pandemic, where relevant models may be unavailable or lack standard documentation. Designing such multi-models through an integral approach is, however, a complex task requiring the collaboration of modelers and experts from various domains. In this collaborative effort, modelers must precisely define the domain knowledge needed from experts and establish a systematic procedure for translating such knowledge into a multi-model. Yet, these requirements and systematic procedures are currently lacking for multi-models that are both multiscale and multi-paradigm. We address this challenge by introducing a procedure for developing multi-models with an integral approach based on clearly defined domain knowledge requirements derived from literature. We illustrate this procedure using the case of school closure policies in the Netherlands during the COVID-19 pandemic, revealing their potential implications in the short and long term and across the healthcare and educational domains. The requirements and procedure provided in this article advance the application of integral multi-modeling for policy support in multiscale and multidomain contexts.
Decision making and learning in the presence of uncertainty has attracted significant attention in view of the increasing need to achieve robust and reliable operations. In the case where uncertainty stems from the presence of adversarial attacks this need is becoming more prominent. In this paper we focus on linear and nonlinear classification problems and propose a novel adversarial training method for robust classifiers, inspired by Support Vector Machine (SVM) margins. We view robustness under a data driven lens, and derive finite sample complexity bounds for both linear and non-linear classifiers in binary and multi-class scenarios. Notably, our bounds match natural classifiers' complexity. Our algorithm minimizes a worst-case surrogate loss using Linear Programming (LP) and Second Order Cone Programming (SOCP) for linear and non-linear models. Numerical experiments on the benchmark MNIST and CIFAR10 datasets show our approach's comparable performance to state-of-the-art methods, without needing adversarial examples during training. Our work offers a comprehensive framework for enhancing binary linear and non-linear classifier robustness, embedding robustness in learning under the presence of adversaries.
Within the nonparametric diffusion model, we develop a multiple test to infer about similarity of an unknown drift $b$ to some reference drift $b_0$: At prescribed significance, we simultaneously identify those regions where violation from similiarity occurs, without a priori knowledge of their number, size and location. This test is shown to be minimax-optimal and adaptive. At the same time, the procedure is robust under small deviation from Brownian motion as the driving noise process. A detailed investigation for fractional driving noise, which is neither a semimartingale nor a Markov process, is provided for Hurst indices close to the Brownian motion case.
Parameters of differential equations are essential to characterize intrinsic behaviors of dynamic systems. Numerous methods for estimating parameters in dynamic systems are computationally and/or statistically inadequate, especially for complex systems with general-order differential operators, such as motion dynamics. This article presents Green's matching, a computationally tractable and statistically efficient two-step method, which only needs to approximate trajectories in dynamic systems but not their derivatives due to the inverse of differential operators by Green's function. This yields a statistically optimal guarantee for parameter estimation in general-order equations, a feature not shared by existing methods, and provides an efficient framework for broad statistical inferences in complex dynamic systems.
We present a method for end-to-end learning of Koopman surrogate models for optimal performance in control. In contrast to previous contributions that employ standard reinforcement learning (RL) algorithms, we use a training algorithm that exploits the potential differentiability of environments based on mechanistic simulation models. We evaluate the performance of our method by comparing it to that of other controller type and training algorithm combinations on a literature known eNMPC case study. Our method exhibits superior performance on this problem, thereby constituting a promising avenue towards more capable controllers that employ dynamic surrogate models.
We formulate a uniform tail bound for empirical processes indexed by a class of functions, in terms of the individual deviations of the functions rather than the worst-case deviation in the considered class. The tail bound is established by introducing an initial "deflation" step to the standard generic chaining argument. The resulting tail bound is the sum of the complexity of the "deflated function class" in terms of a generalization of Talagrand's $\gamma$ functional, and the deviation of the function instance, both of which are formulated based on the natural seminorm induced by the corresponding Cram\'{e}r functions. We also provide certain approximations for the mentioned seminorm when the function class lies in a given (exponential type) Orlicz space, that can be used to make the complexity term and the deviation term more explicit.
The latency location routing problem integrates the facility location problem and the multi-depot cumulative capacitated vehicle routing problem. This problem involves making simultaneous decisions about depot locations and vehicle routes to serve customers while aiming to minimize the sum of waiting (arriving) times for all customers. To address this computationally challenging problem, we propose a reinforcement learning guided hybrid evolutionary algorithm following the framework of the memetic algorithm. The proposed algorithm relies on a diversity-enhanced multi-parent edge assembly crossover to build promising offspring and a reinforcement learning guided variable neighborhood descent to determine the exploration order of multiple neighborhoods. Additionally, strategic oscillation is used to achieve a balanced exploration of both feasible and infeasible solutions. The competitiveness of the algorithm against state-of-the-art methods is demonstrated by experimental results on the three sets of 76 popular instances, including 51 improved best solutions (new upper bounds) for the 59 instances with unknown optima and equal best results for the remaining instances. We also conduct additional experiments to shed light on the key components of the algorithm.
In many communication contexts, the capabilities of the involved actors cannot be known beforehand, whether it is a cell, a plant, an insect, or even a life form unknown to Earth. Regardless of the recipient, the message space and time scale could be too fast, too slow, too large, or too small and may never be decoded. Therefore, it pays to devise a way to encode messages agnostic of space and time scales. We propose the use of fractal functions as self-executable infinite-frequency carriers for sending messages, given their properties of structural self-similarity and scale invariance. We call it `fractal messaging'. Starting from a spatial embedding, we introduce a framework for a space-time scale-free messaging approach to this challenge. When considering a space and time-agnostic framework for message transmission, it would be interesting to encode a message such that it could be decoded at several spatio-temporal scales. Hence, the core idea of the framework proposed herein is to encode a binary message as waves along infinitely many frequencies (in power-like distributions) and amplitudes, transmit such a message, and then decode and reproduce it. To do so, the components of the Weierstrass function, a known fractal, are used as carriers of the message. Each component will have its amplitude modulated to embed the binary stream, allowing for a space-time-agnostic approach to messaging.
The subject of this work is an adaptive stochastic Galerkin finite element method for parametric or random elliptic partial differential equations, which generates sparse product polynomial expansions with respect to the parametric variables of solutions. For the corresponding spatial approximations, an independently refined finite element mesh is used for each polynomial coefficient. The method relies on multilevel expansions of input random fields and achieves error reduction with uniform rate. In particular, the saturation property for the refinement process is ensured by the algorithm. The results are illustrated by numerical experiments, including cases with random fields of low regularity.
We propose a material design method via gradient-based optimization on compositions, overcoming the limitations of traditional methods: exhaustive database searches and conditional generation models. It optimizes inputs via backpropagation, aligning the model's output closely with the target property and facilitating the discovery of unlisted materials and precise property determination. Our method is also capable of adaptive optimization under new conditions without retraining. Applying to exploring high-Tc superconductors, we identified potential compositions beyond existing databases and discovered new hydrogen superconductors via conditional optimization. This method is versatile and significantly advances material design by enabling efficient, extensive searches and adaptability to new constraints.
Intelligent tutoring systems optimize the selection and timing of learning materials to enhance understanding and long-term retention. This requires estimates of both the learner's progress (''knowledge tracing''; KT), and the prerequisite structure of the learning domain (''knowledge mapping''). While recent deep learning models achieve high KT accuracy, they do so at the expense of the interpretability of psychologically-inspired models. In this work, we present a solution to this trade-off. PSI-KT is a hierarchical generative approach that explicitly models how both individual cognitive traits and the prerequisite structure of knowledge influence learning dynamics, thus achieving interpretability by design. Moreover, by using scalable Bayesian inference, PSI-KT targets the real-world need for efficient personalization even with a growing body of learners and learning histories. Evaluated on three datasets from online learning platforms, PSI-KT achieves superior multi-step predictive accuracy and scalable inference in continual-learning settings, all while providing interpretable representations of learner-specific traits and the prerequisite structure of knowledge that causally supports learning. In sum, predictive, scalable and interpretable knowledge tracing with solid knowledge mapping lays a key foundation for effective personalized learning to make education accessible to a broad, global audience.