亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Large Language Models (LLMs) have been shown to be capable of performing high-level planning for long-horizon robotics tasks, yet existing methods require access to a pre-defined skill library (e.g. picking, placing, pulling, pushing, navigating). However, LLM planning does not address how to design or learn those behaviors, which remains challenging particularly in long-horizon settings. Furthermore, for many tasks of interest, the robot needs to be able to adjust its behavior in a fine-grained manner, requiring the agent to be capable of modifying low-level control actions. Can we instead use the internet-scale knowledge from LLMs for high-level policies, guiding reinforcement learning (RL) policies to efficiently solve robotic control tasks online without requiring a pre-determined set of skills? In this paper, we propose Plan-Seq-Learn (PSL): a modular approach that uses motion planning to bridge the gap between abstract language and learned low-level control for solving long-horizon robotics tasks from scratch. We demonstrate that PSL achieves state-of-the-art results on over 25 challenging robotics tasks with up to 10 stages. PSL solves long-horizon tasks from raw visual input spanning four benchmarks at success rates of over 85%, out-performing language-based, classical, and end-to-end approaches. Video results and code at //mihdalal.github.io/planseqlearn/

相關內容

The Graphical User Interface (GUI) is pivotal for human interaction with the digital world, enabling efficient device control and the completion of complex tasks. Recent progress in Large Language Models (LLMs) and Vision Language Models (VLMs) offers the chance to create advanced GUI agents. To ensure their effectiveness, there's a pressing need for qualified benchmarks that provide trustworthy and reproducible evaluations -- a challenge current benchmarks often fail to address. To tackle this issue, we introduce Mobile-Env, a comprehensive toolkit tailored for creating GUI benchmarks in the Android mobile environment. Mobile-Env offers an isolated and controllable setting for reliable evaluations, and accommodates intermediate instructions and rewards to reflect real-world usage more naturally. Utilizing Mobile-Env, we collect an open-world task set across various real-world apps and a fixed world set, WikiHow, which captures a significant amount of dynamic online contents for fully controllable and reproducible evaluation. We conduct comprehensive evaluations of LLM agents using these benchmarks. Our findings reveal that even advanced models (e.g., GPT-4V and LLaMA-3) struggle with tasks that are relatively simple for humans. This highlights a crucial gap in current models and underscores the importance of developing more capable foundation models and more effective GUI agent frameworks.

In recent years, instruction fine-tuning (IFT) on large language models (LLMs) has garnered considerable attention to enhance model performance on unseen tasks. Attempts have been made on automatic construction and effective selection for IFT data. However, we posit that previous methods have not fully harnessed the potential of LLMs for enhancing data quality. The responses within IFT data could be further enhanced by leveraging the capabilities of LLMs themselves. In this paper, we propose CoEvol, an LLM-based multi-agent cooperation framework for the improvement of responses to instructions. To effectively refine the responses, we develop an iterative framework following a debate-advise-edit-judge paradigm. A two-stage multi-agent debate strategy is further devised to ensure the diversity and reliability of editing suggestions within the framework. Empirically, models equipped with CoEvol outperform competitive baselines evaluated by MT-Bench and AlpacaEval, demonstrating its effectiveness in enhancing instruction-following capabilities for LLMs.

The pursuit of artificial general intelligence (AGI) has been accelerated by Multimodal Large Language Models (MLLMs), which exhibit superior reasoning, generalization capabilities, and proficiency in processing multimodal inputs. A crucial milestone in the evolution of AGI is the attainment of human-level planning, a fundamental ability for making informed decisions in complex environments, and solving a wide range of real-world problems. Despite the impressive advancements in MLLMs, a question remains: How far are current MLLMs from achieving human-level planning? To shed light on this question, we introduce EgoPlan-Bench, a comprehensive benchmark to evaluate the planning abilities of MLLMs in real-world scenarios from an egocentric perspective, mirroring human perception. EgoPlan-Bench emphasizes the evaluation of planning capabilities of MLLMs, featuring realistic tasks, diverse action plans, and intricate visual observations. Our rigorous evaluation of a wide range of MLLMs reveals that EgoPlan-Bench poses significant challenges, highlighting a substantial scope for improvement in MLLMs to achieve human-level task planning. To facilitate this advancement, we further present EgoPlan-IT, a specialized instruction-tuning dataset that effectively enhances model performance on EgoPlan-Bench. We have made all codes, data, and a maintained benchmark leaderboard available to advance future research.

Recently, brain-inspired spiking neural networks (SNNs) have attracted great research attention owing to their inherent bio-interpretability, event-triggered properties and powerful perception of spatiotemporal information, which is beneficial to handling event-based neuromorphic datasets. In contrast to conventional static image datasets, event-based neuromorphic datasets present heightened complexity in feature extraction due to their distinctive time series and sparsity characteristics, which influences their classification accuracy. To overcome this challenge, a novel approach termed Neuromorphic Momentum Contrast Learning (NeuroMoCo) for SNNs is introduced in this paper by extending the benefits of self-supervised pre-training to SNNs to effectively stimulate their potential. This is the first time that self-supervised learning (SSL) based on momentum contrastive learning is realized in SNNs. In addition, we devise a novel loss function named MixInfoNCE tailored to their temporal characteristics to further increase the classification accuracy of neuromorphic datasets, which is verified through rigorous ablation experiments. Finally, experiments on DVS-CIFAR10, DVS128Gesture and N-Caltech101 have shown that NeuroMoCo of this paper establishes new state-of-the-art (SOTA) benchmarks: 83.6% (Spikformer-2-256), 98.62% (Spikformer-2-256), and 84.4% (SEW-ResNet-18), respectively.

Grid-centric perception is a crucial field for mobile robot perception and navigation. Nonetheless, grid-centric perception is less prevalent than object-centric perception as autonomous vehicles need to accurately perceive highly dynamic, large-scale traffic scenarios and the complexity and computational costs of grid-centric perception are high. In recent years, the rapid development of deep learning techniques and hardware provides fresh insights into the evolution of grid-centric perception. The fundamental difference between grid-centric and object-centric pipeline lies in that grid-centric perception follows a geometry-first paradigm which is more robust to the open-world driving scenarios with endless long-tailed semantically-unknown obstacles. Recent researches demonstrate the great advantages of grid-centric perception, such as comprehensive fine-grained environmental representation, greater robustness to occlusion and irregular shaped objects, better ground estimation, and safer planning policies. There is also a growing trend that the capacity of occupancy networks are greatly expanded to 4D scene perception and prediction and latest techniques are highly related to new research topics such as 4D occupancy forecasting, generative AI and world models in the field of autonomous driving. Given the lack of current surveys for this rapidly expanding field, we present a hierarchically-structured review of grid-centric perception for autonomous vehicles. We organize previous and current knowledge of occupancy grid techniques along the main vein from 2D BEV grids to 3D occupancy to 4D occupancy forecasting. We additionally summarize label-efficient occupancy learning and the role of grid-centric perception in driving systems. Lastly, we present a summary of the current research trend and provide future outlooks.

Pre-trained vision-language models, e.g., CLIP, have been successfully applied to zero-shot semantic segmentation. Existing CLIP-based approaches primarily utilize visual features from the last layer to align with text embeddings, while they neglect the crucial information in intermediate layers that contain rich object details. However, we find that directly aggregating the multi-level visual features weakens the zero-shot ability for novel classes. The large differences between the visual features from different layers make these features hard to align well with the text embeddings. We resolve this problem by introducing a series of independent decoders to align the multi-level visual features with the text embeddings in a cascaded way, forming a novel but simple framework named Cascade-CLIP. Our Cascade-CLIP is flexible and can be easily applied to existing zero-shot semantic segmentation methods. Experimental results show that our simple Cascade-CLIP achieves superior zero-shot performance on segmentation benchmarks, like COCO-Stuff, Pascal-VOC, and Pascal-Context. Our code is available at: //github.com/HVision-NKU/Cascade-CLIP

The advancements in embodied AI are increasingly enabling robots to tackle complex real-world tasks, such as household manipulation. However, the deployment of robots in these environments remains constrained by the lack of comprehensive bimanual-mobile robot manipulation data that can be learned. Existing datasets predominantly focus on single-arm manipulation tasks, while the few dual-arm datasets available often lack mobility features, task diversity, comprehensive sensor data, and robust evaluation metrics; they fail to capture the intricate and dynamic nature of household manipulation tasks that bimanual-mobile robots are expected to perform. To overcome these limitations, we propose BRMData, a Bimanual-mobile Robot Manipulation Dataset specifically designed for household applications. BRMData encompasses 10 diverse household tasks, including single-arm and dual-arm tasks, as well as both tabletop and mobile manipulations, utilizing multi-view and depth-sensing data information. Moreover, BRMData features tasks of increasing difficulty, ranging from single-object to multi-object grasping, non-interactive to human-robot interactive scenarios, and rigid-object to flexible-object manipulation, closely simulating real-world household applications. Additionally, we introduce a novel Manipulation Efficiency Score (MES) metric to evaluate both the precision and efficiency of robot manipulation methods in household tasks. We thoroughly evaluate and analyze the performance of advanced robot manipulation learning methods using our BRMData, aiming to drive the development of bimanual-mobile robot manipulation technologies. The dataset is now open-sourced and available at //embodiedrobot.github.io/.

Self-Supervised Learning (SSL) models have demonstrated exceptional performance in various speech tasks, particularly in low-resource and multilingual domains. Recent works show that fusing diverse SSL models could achieve superior performance compared to using one SSL model. However, fusing models increases the overall parameter size, leading to higher computational costs. We propose EFFUSE, a novel approach that uses a single SSL model to mimic the features of multiple SSL models via prediction, resulting in a lightweight framework with competitive performance. Our experiments show that EFFUSE outperforms individual SSL models in multilingual speech recognition tasks. Our best performing model achieves an average SUPERB score increase of 63.5 (6.3%) from the SSL baselines in Multilingual Speech Universal PERformance Benchmark (ML-SUPERB), while decreasing parameter size on average by 317M parameters (49%) from the fusion models.

Point cloud-based large scale place recognition is fundamental for many applications like Simultaneous Localization and Mapping (SLAM). Although many models have been proposed and have achieved good performance by learning short-range local features, long-range contextual properties have often been neglected. Moreover, the model size has also become a bottleneck for their wide applications. To overcome these challenges, we propose a super light-weight network model termed SVT-Net for large scale place recognition. Specifically, on top of the highly efficient 3D Sparse Convolution (SP-Conv), an Atom-based Sparse Voxel Transformer (ASVT) and a Cluster-based Sparse Voxel Transformer (CSVT) are proposed to learn both short-range local features and long-range contextual features in this model. Consisting of ASVT and CSVT, SVT-Net can achieve state-of-the-art on benchmark datasets in terms of both accuracy and speed with a super-light model size (0.9M). Meanwhile, two simplified versions of SVT-Net are introduced, which also achieve state-of-the-art and further reduce the model size to 0.8M and 0.4M respectively.

Few-shot Knowledge Graph (KG) completion is a focus of current research, where each task aims at querying unseen facts of a relation given its few-shot reference entity pairs. Recent attempts solve this problem by learning static representations of entities and references, ignoring their dynamic properties, i.e., entities may exhibit diverse roles within task relations, and references may make different contributions to queries. This work proposes an adaptive attentional network for few-shot KG completion by learning adaptive entity and reference representations. Specifically, entities are modeled by an adaptive neighbor encoder to discern their task-oriented roles, while references are modeled by an adaptive query-aware aggregator to differentiate their contributions. Through the attention mechanism, both entities and references can capture their fine-grained semantic meanings, and thus render more expressive representations. This will be more predictive for knowledge acquisition in the few-shot scenario. Evaluation in link prediction on two public datasets shows that our approach achieves new state-of-the-art results with different few-shot sizes.

北京阿比特科技有限公司