亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

The recent renaissance in generative models, driven primarily by the advent of diffusion models and iterative improvement in GAN methods, has enabled many creative applications. However, each advancement is also accompanied by a rise in the potential for misuse. In the arena of deepfake generation this is a key societal issue. In particular, the ability to modify segments of videos using such generative techniques creates a new paradigm of deepfakes which are mostly real videos altered slightly to distort the truth. Current deepfake detection methods in the academic literature are not evaluated on this paradigm. In this paper, we present a deepfake detection method able to address this issue by performing both frame and video level deepfake prediction. To facilitate testing our method we create a new benchmark dataset where videos have both real and fake frame sequences. Our method utilizes the Vision Transformer, Scaling and Shifting pretraining and Timeseries Transformer to temporally segment videos to help facilitate the interpretation of possible deepfakes. Extensive experiments on a variety of deepfake generation methods show excellent results on temporal segmentation and classical video level predictions as well. In particular, the paradigm we introduce will form a powerful tool for the moderation of deepfakes, where human oversight can be better targeted to the parts of videos suspected of being deepfakes. All experiments can be reproduced at: //github.com/sanjaysaha1311/temporal-deepfake-segmentation.

相關內容

Due to the high variation in the application requirements of sound event detection (SED) systems, it is not sufficient to evaluate systems only in a single operating mode. Therefore, the community recently adopted the polyphonic sound detection score (PSDS) as an evaluation metric, which is the normalized area under the PSD receiver operating characteristic (PSD-ROC). It summarizes the system performance over a range of operating modes resulting from varying the decision threshold that is used to translate the system output scores into a binary detection output. Hence, it provides a more complete picture of the overall system behavior and is less biased by specific threshold tuning. However, besides the decision threshold there is also the post-processing that can be changed to enter another operating mode. In this paper we propose the post-processing independent PSDS (piPSDS) as a generalization of the PSDS. Here, the post-processing independent PSD-ROC includes operating points from varying post-processings with varying decision thresholds. Thus, it summarizes even more operating modes of an SED system and allows for system comparison without the need of implementing a post-processing and without a bias due to different post-processings. While piPSDS can in principle combine different types of post-processing, we hear, as a first step, present median filter independent PSDS (miPSDS) results for this year's DCASE Challenge Task4a systems. Source code is publicly available in our sed_scores_eval package (//github.com/fgnt/sed_scores_eval).

Transfer learning aims to make the most of existing pre-trained models to achieve better performance on a new task in limited data scenarios. However, it is unclear which models will perform best on which task, and it is prohibitively expensive to try all possible combinations. If transferability estimation offers a computation-efficient approach to evaluate the generalisation ability of models, prior works focused exclusively on classification settings. To overcome this limitation, we extend transferability metrics to object detection. We design a simple method to extract local features corresponding to each object within an image using ROI-Align. We also introduce TLogME, a transferability metric taking into account the coordinates regression task. In our experiments, we compare TLogME to state-of-the-art metrics in the estimation of transfer performance of the Faster-RCNN object detector. We evaluate all metrics on source and target selection tasks, for real and synthetic datasets, and with different backbone architectures. We show that, over different tasks, TLogME using the local extraction method provides a robust correlation with transfer performance and outperforms other transferability metrics on local and global level features.

The wide dissemination of fake news has affected our lives in many aspects, making fake news detection important and attracting increasing attention. Existing approaches make substantial contributions in this field by modeling news from a single-modal or multi-modal perspective. However, these modal-based methods can result in sub-optimal outcomes as they ignore reader behaviors in news consumption and authenticity verification. For instance, they haven't taken into consideration the component-by-component reading process: from the headline, images, comments, to the body, which is essential for modeling news with more granularity. To this end, we propose an approach of Emulating the behaviors of readers (Ember) for fake news detection on social media, incorporating readers' reading and verificating process to model news from the component perspective thoroughly. Specifically, we first construct intra-component feature extractors to emulate the behaviors of semantic analyzing on each component. Then, we design a module that comprises inter-component feature extractors and a sequence-based aggregator. This module mimics the process of verifying the correlation between components and the overall reading and verification sequence. Thus, Ember can handle the news with various components by emulating corresponding sequences. We conduct extensive experiments on nine real-world datasets, and the results demonstrate the superiority of Ember.

Fake news detection has been a critical task for maintaining the health of the online news ecosystem. However, very few existing works consider the temporal shift issue caused by the rapidly-evolving nature of news data in practice, resulting in significant performance degradation when training on past data and testing on future data. In this paper, we observe that the appearances of news events on the same topic may display discernible patterns over time, and posit that such patterns can assist in selecting training instances that could make the model adapt better to future data. Specifically, we design an effective framework FTT (Forecasting Temporal Trends), which could forecast the temporal distribution patterns of news data and then guide the detector to fast adapt to future distribution. Experiments on the real-world temporally split dataset demonstrate the superiority of our proposed framework. The code is available at //github.com/ICTMCG/FTT-ACL23.

While there has been a growing research interest in developing out-of-distribution (OOD) detection methods, there has been comparably little discussion around how these methods should be evaluated. Given their relevance for safe(r) AI, it is important to examine whether the basis for comparing OOD detection methods is consistent with practical needs. In this work, we take a closer look at the go-to metrics for evaluating OOD detection, and question the approach of exclusively reducing OOD detection to a binary classification task with little consideration for the detection threshold. We illustrate the limitations of current metrics (AUROC & its friends) and propose a new metric - Area Under the Threshold Curve (AUTC), which explicitly penalizes poor separation between ID and OOD samples. Scripts and data are available at //github.com/glhr/beyond-auroc

Gravitational lensing is the relativistic effect generated by massive bodies, which bend the space-time surrounding them. It is a deeply investigated topic in astrophysics and allows validating theoretical relativistic results and studying faint astrophysical objects that would not be visible otherwise. In recent years Machine Learning methods have been applied to support the analysis of the gravitational lensing phenomena by detecting lensing effects in data sets consisting of images associated with brightness variation time series. However, the state-of-art approaches either consider only images and neglect time-series data or achieve relatively low accuracy on the most difficult data sets. This paper introduces DeepGraviLens, a novel multi-modal network that classifies spatio-temporal data belonging to one non-lensed system type and three lensed system types. It surpasses the current state of the art accuracy results by $\approx 3\%$ to $\approx 11\%$, depending on the considered data set. Such an improvement will enable the acceleration of the analysis of lensed objects in upcoming astrophysical surveys, which will exploit the petabytes of data collected, e.g., from the Vera C. Rubin Observatory.

One cannot make truly fair decisions using integer linear programs unless one controls the selection probabilities of the (possibly many) optimal solutions. For this purpose, we propose a unified framework when binary decision variables represent agents with dichotomous preferences, who only care about whether they are selected in the final solution. We develop several general-purpose algorithms to fairly select optimal solutions, for example, by maximizing the Nash product or the minimum selection probability, or by using a random ordering of the agents as a selection criterion (Random Serial Dictatorship). As such, we embed the black-box procedure of solving an integer linear program into a framework that is explainable from start to finish. Moreover, we study the axiomatic properties of the proposed methods by embedding our framework into the rich literature of cooperative bargaining and probabilistic social choice. Lastly, we evaluate the proposed methods on a specific application, namely kidney exchange. We find that while the methods maximizing the Nash product or the minimum selection probability outperform the other methods on the evaluated welfare criteria, methods such as Random Serial Dictatorship perform reasonably well in computation times that are similar to those of finding a single optimal solution.

With the rapid development of facial forgery techniques, forgery detection has attracted more and more attention due to security concerns. Existing approaches attempt to use frequency information to mine subtle artifacts under high-quality forged faces. However, the exploitation of frequency information is coarse-grained, and more importantly, their vanilla learning process struggles to extract fine-grained forgery traces. To address this issue, we propose a progressive enhancement learning framework to exploit both the RGB and fine-grained frequency clues. Specifically, we perform a fine-grained decomposition of RGB images to completely decouple the real and fake traces in the frequency space. Subsequently, we propose a progressive enhancement learning framework based on a two-branch network, combined with self-enhancement and mutual-enhancement modules. The self-enhancement module captures the traces in different input spaces based on spatial noise enhancement and channel attention. The Mutual-enhancement module concurrently enhances RGB and frequency features by communicating in the shared spatial dimension. The progressive enhancement process facilitates the learning of discriminative features with fine-grained face forgery clues. Extensive experiments on several datasets show that our method outperforms the state-of-the-art face forgery detection methods.

The key challenge of image manipulation detection is how to learn generalizable features that are sensitive to manipulations in novel data, whilst specific to prevent false alarms on authentic images. Current research emphasizes the sensitivity, with the specificity overlooked. In this paper we address both aspects by multi-view feature learning and multi-scale supervision. By exploiting noise distribution and boundary artifact surrounding tampered regions, the former aims to learn semantic-agnostic and thus more generalizable features. The latter allows us to learn from authentic images which are nontrivial to be taken into account by current semantic segmentation network based methods. Our thoughts are realized by a new network which we term MVSS-Net. Extensive experiments on five benchmark sets justify the viability of MVSS-Net for both pixel-level and image-level manipulation detection.

Search in social networks such as Facebook poses different challenges than in classical web search: besides the query text, it is important to take into account the searcher's context to provide relevant results. Their social graph is an integral part of this context and is a unique aspect of Facebook search. While embedding-based retrieval (EBR) has been applied in eb search engines for years, Facebook search was still mainly based on a Boolean matching model. In this paper, we discuss the techniques for applying EBR to a Facebook Search system. We introduce the unified embedding framework developed to model semantic embeddings for personalized search, and the system to serve embedding-based retrieval in a typical search system based on an inverted index. We discuss various tricks and experiences on end-to-end optimization of the whole system, including ANN parameter tuning and full-stack optimization. Finally, we present our progress on two selected advanced topics about modeling. We evaluated EBR on verticals for Facebook Search with significant metrics gains observed in online A/B experiments. We believe this paper will provide useful insights and experiences to help people on developing embedding-based retrieval systems in search engines.

北京阿比特科技有限公司