亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

We present a simple yet effective technique to estimate lighting in a single input image. Current techniques rely heavily on HDR panorama datasets to train neural networks to regress an input with limited field-of-view to a full environment map. However, these approaches often struggle with real-world, uncontrolled settings due to the limited diversity and size of their datasets. To address this problem, we leverage diffusion models trained on billions of standard images to render a chrome ball into the input image. Despite its simplicity, this task remains challenging: the diffusion models often insert incorrect or inconsistent objects and cannot readily generate images in HDR format. Our research uncovers a surprising relationship between the appearance of chrome balls and the initial diffusion noise map, which we utilize to consistently generate high-quality chrome balls. We further fine-tune an LDR difusion model (Stable Diffusion XL) with LoRA, enabling it to perform exposure bracketing for HDR light estimation. Our method produces convincing light estimates across diverse settings and demonstrates superior generalization to in-the-wild scenarios.

相關內容

Google Chrome,又稱谷(gu)歌(ge)瀏覽(lan)(lan)器,是由谷(gu)歌(ge)(Google)公司(si)開(kai)發的網頁瀏覽(lan)(lan)器。基(ji)于開(kai)放源碼(ma)的Chromium項目。 .

This report describes the state of the art in verifiable computation. The problem being solved is the following: The Verifiable Computation Problem (Verifiable Computing Problem) Suppose we have two computing agents. The first agent is the verifier, and the second agent is the prover. The verifier wants the prover to perform a computation. The verifier sends a description of the computation to the prover. Once the prover has completed the task, the prover returns the output to the verifier. The output will contain proof. The verifier can use this proof to check if the prover computed the output correctly. The check is not required to verify the algorithm used in the computation. Instead, it is a check that the prover computed the output using the computation specified by the verifier. The effort required for the check should be much less than that required to perform the computation. This state-of-the-art report surveys 128 papers from the literature comprising more than 4,000 pages. Other papers and books were surveyed but were omitted. The papers surveyed were overwhelmingly mathematical. We have summarised the major concepts that form the foundations for verifiable computation. The report contains two main sections. The first, larger section covers the theoretical foundations for probabilistically checkable and zero-knowledge proofs. The second section contains a description of the current practice in verifiable computation. Two further reports will cover (i) military applications of verifiable computation and (ii) a collection of technical demonstrators. The first of these is intended to be read by those who want to know what applications are enabled by the current state of the art in verifiable computation. The second is for those who want to see practical tools and conduct experiments themselves.

The drastic variation of motion in spatial and temporal dimensions makes the video prediction task extremely challenging. Existing RNN models obtain higher performance by deepening or widening the model. They obtain the multi-scale features of the video only by stacking layers, which is inefficient and brings unbearable training costs (such as memory, FLOPs, and training time). Different from them, this paper proposes a spatiotemporal multi-scale model called MS-LSTM wholly from a multi-scale perspective. On the basis of stacked layers, MS-LSTM incorporates two additional efficient multi-scale designs to fully capture spatiotemporal context information. Concretely, we employ LSTMs with mirrored pyramid structures to construct spatial multi-scale representations and LSTMs with different convolution kernels to construct temporal multi-scale representations. We theoretically analyze the training cost and performance of MS-LSTM and its components. Detailed comparison experiments with twelve baseline models on four video datasets show that MS-LSTM has better performance but lower training costs.

Inpainting involves filling in missing pixels or areas in an image, a crucial technique employed in Mixed Reality environments for various applications, particularly in Diminished Reality (DR) where content is removed from a user's visual environment. Existing methods rely on digital replacement techniques which necessitate multiple cameras and incur high costs. AR devices and smartphones use ToF depth sensors to capture scene depth maps aligned with RGB images. Despite speed and affordability, ToF cameras create imperfect depth maps with missing pixels. To address the above challenges, we propose Hierarchical Inpainting GAN (HI-GAN), a novel approach comprising three GANs in a hierarchical fashion for RGBD inpainting. EdgeGAN and LabelGAN inpaint masked edge and segmentation label images respectively, while CombinedRGBD-GAN combines their latent representation outputs and performs RGB and Depth inpainting. Edge images and particularly segmentation label images as auxiliary inputs significantly enhance inpainting performance by complementary context and hierarchical optimization. We believe we make the first attempt to incorporate label images into inpainting process.Unlike previous approaches requiring multiple sequential models and separate outputs, our work operates in an end-to-end manner, training all three models simultaneously and hierarchically. Specifically, EdgeGAN and LabelGAN are first optimized separately and further optimized inside CombinedRGBD-GAN to enhance inpainting quality. Experiments demonstrate that HI-GAN works seamlessly and achieves overall superior performance compared with existing approaches.

We propose a novel self-supervised approach for learning to visually localize robots equipped with controllable LEDs. We rely on a few training samples labeled with position ground truth and many training samples in which only the LED state is known, whose collection is cheap. We show that using LED state prediction as a pretext task significantly helps to learn the visual localization end task. The resulting model does not require knowledge of LED states during inference. We instantiate the approach to visual relative localization of nano-quadrotors: experimental results show that using our pretext task significantly improves localization accuracy (from 68.3% to 76.2%) and outperforms alternative strategies, such as a supervised baseline, model pre-training, and an autoencoding pretext task. We deploy our model aboard a 27-g Crazyflie nano-drone, running at 21 fps, in a position-tracking task of a peer nano-drone. Our approach, relying on position labels for only 300 images, yields a mean tracking error of 4.2 cm versus 11.9 cm of a supervised baseline model trained without our pretext task. Videos and code of the proposed approach are available at //github.com/idsia-robotics/leds-as-pretext

Large-scale black-box models have become ubiquitous across numerous applications. Understanding the influence of individual training data sources on predictions made by these models is crucial for improving their trustworthiness. Current influence estimation techniques involve computing gradients for every training point or repeated training on different subsets. These approaches face obvious computational challenges when scaled up to large datasets and models. In this paper, we introduce and explore the Mirrored Influence Hypothesis, highlighting a reciprocal nature of influence between training and test data. Specifically, it suggests that evaluating the influence of training data on test predictions can be reformulated as an equivalent, yet inverse problem: assessing how the predictions for training samples would be altered if the model were trained on specific test samples. Through both empirical and theoretical validations, we demonstrate the wide applicability of our hypothesis. Inspired by this, we introduce a new method for estimating the influence of training data, which requires calculating gradients for specific test samples, paired with a forward pass for each training point. This approach can capitalize on the common asymmetry in scenarios where the number of test samples under concurrent examination is much smaller than the scale of the training dataset, thus gaining a significant improvement in efficiency compared to existing approaches. We demonstrate the applicability of our method across a range of scenarios, including data attribution in diffusion models, data leakage detection, analysis of memorization, mislabeled data detection, and tracing behavior in language models. Our code will be made available at //github.com/ruoxi-jia-group/Forward-INF.

Diffusion models (DMs) have shown great potential for high-quality image synthesis. However, when it comes to producing images with complex scenes, how to properly describe both image global structures and object details remains a challenging task. In this paper, we present Frido, a Feature Pyramid Diffusion model performing a multi-scale coarse-to-fine denoising process for image synthesis. Our model decomposes an input image into scale-dependent vector quantized features, followed by a coarse-to-fine gating for producing image output. During the above multi-scale representation learning stage, additional input conditions like text, scene graph, or image layout can be further exploited. Thus, Frido can be also applied for conditional or cross-modality image synthesis. We conduct extensive experiments over various unconditioned and conditional image generation tasks, ranging from text-to-image synthesis, layout-to-image, scene-graph-to-image, to label-to-image. More specifically, we achieved state-of-the-art FID scores on five benchmarks, namely layout-to-image on COCO and OpenImages, scene-graph-to-image on COCO and Visual Genome, and label-to-image on COCO. Code is available at //github.com/davidhalladay/Frido.

Video captioning is a challenging task that requires a deep understanding of visual scenes. State-of-the-art methods generate captions using either scene-level or object-level information but without explicitly modeling object interactions. Thus, they often fail to make visually grounded predictions, and are sensitive to spurious correlations. In this paper, we propose a novel spatio-temporal graph model for video captioning that exploits object interactions in space and time. Our model builds interpretable links and is able to provide explicit visual grounding. To avoid unstable performance caused by the variable number of objects, we further propose an object-aware knowledge distillation mechanism, in which local object information is used to regularize global scene features. We demonstrate the efficacy of our approach through extensive experiments on two benchmarks, showing our approach yields competitive performance with interpretable predictions.

We study the problem of efficient semantic segmentation for large-scale 3D point clouds. By relying on expensive sampling techniques or computationally heavy pre/post-processing steps, most existing approaches are only able to be trained and operate over small-scale point clouds. In this paper, we introduce RandLA-Net, an efficient and lightweight neural architecture to directly infer per-point semantics for large-scale point clouds. The key to our approach is to use random point sampling instead of more complex point selection approaches. Although remarkably computation and memory efficient, random sampling can discard key features by chance. To overcome this, we introduce a novel local feature aggregation module to progressively increase the receptive field for each 3D point, thereby effectively preserving geometric details. Extensive experiments show that our RandLA-Net can process 1 million points in a single pass with up to 200X faster than existing approaches. Moreover, our RandLA-Net clearly surpasses state-of-the-art approaches for semantic segmentation on two large-scale benchmarks Semantic3D and SemanticKITTI.

Substantial efforts have been devoted more recently to presenting various methods for object detection in optical remote sensing images. However, the current survey of datasets and deep learning based methods for object detection in optical remote sensing images is not adequate. Moreover, most of the existing datasets have some shortcomings, for example, the numbers of images and object categories are small scale, and the image diversity and variations are insufficient. These limitations greatly affect the development of deep learning based object detection methods. In the paper, we provide a comprehensive review of the recent deep learning based object detection progress in both the computer vision and earth observation communities. Then, we propose a large-scale, publicly available benchmark for object DetectIon in Optical Remote sensing images, which we name as DIOR. The dataset contains 23463 images and 192472 instances, covering 20 object classes. The proposed DIOR dataset 1) is large-scale on the object categories, on the object instance number, and on the total image number; 2) has a large range of object size variations, not only in terms of spatial resolutions, but also in the aspect of inter- and intra-class size variability across objects; 3) holds big variations as the images are obtained with different imaging conditions, weathers, seasons, and image quality; and 4) has high inter-class similarity and intra-class diversity. The proposed benchmark can help the researchers to develop and validate their data-driven methods. Finally, we evaluate several state-of-the-art approaches on our DIOR dataset to establish a baseline for future research.

This work addresses a novel and challenging problem of estimating the full 3D hand shape and pose from a single RGB image. Most current methods in 3D hand analysis from monocular RGB images only focus on estimating the 3D locations of hand keypoints, which cannot fully express the 3D shape of hand. In contrast, we propose a Graph Convolutional Neural Network (Graph CNN) based method to reconstruct a full 3D mesh of hand surface that contains richer information of both 3D hand shape and pose. To train networks with full supervision, we create a large-scale synthetic dataset containing both ground truth 3D meshes and 3D poses. When fine-tuning the networks on real-world datasets without 3D ground truth, we propose a weakly-supervised approach by leveraging the depth map as a weak supervision in training. Through extensive evaluations on our proposed new datasets and two public datasets, we show that our proposed method can produce accurate and reasonable 3D hand mesh, and can achieve superior 3D hand pose estimation accuracy when compared with state-of-the-art methods.

北京阿比特科技有限公司