亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

The Unsplittable Flow on a Path (UFP) problem has sparked remarkable attention as a challenging combinatorial problem with profound practical implications. Steered by its prominent application in power engineering, the present work formulates a novel generalization of UFP, wherein demands and capacities in the input instance are monotone step functions over the set of edges. As an initial step towards tackling this generalization, we draw on and extend ideas from prior research to devise a a quasi-polynomial time approximation scheme (QPTAS) under the premise that the demands and capacities lie in a quasi-polynomial range. Second, retaining the same assumption, an efficient logarithmic approximation is introduced for the single-source variant of the problem. Finally, we round up the contributions by designing a (kind of) black-box reduction that, under some mild conditions, allows to translate LP-based approximation algorithms for the studied problem into their counterparts for the Alternating Current Optimal Power Flow (AC OPF) problem -- a fundamental workflow in operation and control of power systems.

相關內容

We consider a Johnson-N\'ed\'elec FEM-BEM coupling, which is a direct and non-symmetric coupling of finite and boundary element methods, in order to solve interface problems for the magnetostatic Maxwell's equations with the magnetic vector potential ansatz. In the FEM-domain, equations may be non-linear, whereas they are exclusively linear in the BEM-part to guarantee the existence of a fundamental solution. First, the weak problem is formulated in quotient spaces to avoid resolving to a saddle point problem. Second, we establish in this setting well-posedness of the arising problem using the framework of Lipschitz and strongly monotone operators as well as a stability result for a special type of non-linearity, which is typically considered in magnetostatic applications. Then, the discretization is performed in the isogeometric context, i.e., the same type of basis functions that are used for geometry design are considered as ansatz functions for the discrete setting. In particular, NURBS are employed for geometry considerations, and B-Splines, which can be understood as a special type of NURBS, for analysis purposes. In this context, we derive a priori estimates w.r.t. h-refinement, and point out to an interesting behavior of BEM, which consists in an amelioration of the convergence rates, when a functional of the solution is evaluated in the exterior BEM-domain. This improvement may lead to a doubling of the convergence rate under certain assumptions. Finally, we end the paper with a numerical example to illustrate the theoretical results, along with a conclusion and an outlook.

Given a fixed finite metric space $(V,\mu)$, the {\em minimum $0$-extension problem}, denoted as ${\tt 0\mbox{-}Ext}[\mu]$, is equivalent to the following optimization problem: minimize function of the form $\min\limits_{x\in V^n} \sum_i f_i(x_i) + \sum_{ij}c_{ij}\mu(x_i,x_j)$ where $c_{ij},c_{vi}$ are given nonnegative costs and $f_i:V\rightarrow \mathbb R$ are functions given by $f_i(x_i)=\sum_{v\in V}c_{vi}\mu(x_i,v)$. The computational complexity of ${\tt 0\mbox{-}Ext}[\mu]$ has been recently established by Karzanov and by Hirai: if metric $\mu$ is {\em orientable modular} then ${\tt 0\mbox{-}Ext}[\mu]$ can be solved in polynomial time, otherwise ${\tt 0\mbox{-}Ext}[\mu]$ is NP-hard. To prove the tractability part, Hirai developed a theory of discrete convex functions on orientable modular graphs generalizing several known classes of functions in discrete convex analysis, such as $L^\natural$-convex functions. We consider a more general version of the problem in which unary functions $f_i(x_i)$ can additionally have terms of the form $c_{uv;i}\mu(x_i,\{u,v\})$ for $\{u,v\}\in F$, where set $F\subseteq\binom{V}{2}$ is fixed. We extend the complexity classification above by providing an explicit condition on $(\mu,F)$ for the problem to be tractable. In order to prove the tractability part, we generalize Hirai's theory and define a larger class of discrete convex functions. It covers, in particular, another well-known class of functions, namely submodular functions on an integer lattice. Finally, we improve the complexity of Hirai's algorithm for solving ${\tt 0\mbox{-}Ext}[\mu]$ on orientable modular graphs.

Self-stabilization is an excellent approach for adding fault tolerance to a distributed multi-agent system. However, two properties of self-stabilization theory, convergence and closure, may not be satisfied if agents are selfish. To guarantee convergence, we formulate the problem as a stochastic Bayesian game and introduce probabilistic self-stabilization to adjust the probabilities of rules with behavior strategies. This satisfies agents' self-interests such that no agent deviates the rules. To guarantee closure in the presence of selfish agents, we propose fault-containment as a method to constrain legitimate configurations of the self-stabilizing system to be Nash equilibria. We also assume selfish agents as capable of performing unauthorized actions at any time, which threatens both properties, and present a stepwise solution to handle it. As a case study, we consider the problem of distributed clustering and propose five self-stabilizing algorithms for forming clusters. Simulation results show that our algorithms react correctly to rule deviations and outperform comparable schemes in terms of fairness and stabilization time.

We address the problem of computing a Steiner Arborescence on a directed hypercube, that enjoys a special connectivity structure among its node set but is exponential in $m$ size rendering traditional Steiner tree algorithms inefficient. Even though the problem was known to be NP-complete, parameterized complexity of the problem was unknown. With applications in evolutionary tree reconstruction algorithms and incremental algorithms for computing a property on multiple input graphs, any algorithm for this problem would open up new ways to study these applications. In this paper, we present the first algorithms, to the best our knowledge, that prove the problem to be fixed parameter tractable (FPT) wrt two natural parameters -- number of input terminals and penalty of the arborescence. These parameters along with the special structure of the hypercube offer different trade-offs in terms of running time tractability vs. approximation guarantees that are interestingly additive in nature. Given any directed $m$-dimensional hypercube, rooted at the zero node, and a set of input terminals $R$ that needs to be spanned by the Steiner arborescence, we prove that the problem is FPT wrt the penalty parameter $q$, by providing a randomized algorithm that computes an optimal arborescence $T$ in $O\left(q^44^{q\left(q+1\right)}+q\left|R\right|m^2\right)$ with probability at least $4^{-q}$. If we trade-off exact solution for an additive approximation one, then we can design a parameterized approximation algorithm with better running time - computing an arborescence $T$ with cost at most $OPT+(\left|R\right|-4)(q_{opt}-1)$ in time $O\left|R\right|m^2+1.2738^{q_{opt}})$. We also present a dynamic programming algorithm that computes an optimal arborescence in $O(3^{\left|R\right|}\left|R\right|m)$ time, thus proving that the problem is FPT on the parameter $\left|R\right|$.

In this work, we investigate various approaches that use learning from training data to solve inverse problems, following a bi-level learning approach. We consider a general framework for optimal inversion design, where training data can be used to learn optimal regularization parameters, data fidelity terms, and regularizers, thereby resulting in superior variational regularization methods. In particular, we describe methods to learn optimal $p$ and $q$ norms for ${\rm L}^p-{\rm L}^q$ regularization and methods to learn optimal parameters for regularization matrices defined by covariance kernels. We exploit efficient algorithms based on Krylov projection methods for solving the regularized problems, both at training and validation stages, making these methods well-suited for large-scale problems. Our experiments show that the learned regularization methods perform well even when there is some inexactness in the forward operator, resulting in a mixture of model and measurement error.

This paper introduces, for the first time to our knowledge, physics-informed neural networks to accurately estimate the AC-OPF result and delivers rigorous guarantees about their performance. Power system operators, along with several other actors, are increasingly using Optimal Power Flow (OPF) algorithms for a wide number of applications, including planning and real-time operations. However, in its original form, the AC Optimal Power Flow problem is often challenging to solve as it is non-linear and non-convex. Besides the large number of approximations and relaxations, recent efforts have also been focusing on Machine Learning approaches, especially neural networks. So far, however, these approaches have only partially considered the wide number of physical models available during training. And, more importantly, they have offered no guarantees about potential constraint violations of their output. Our approach (i) introduces the AC power flow equations inside neural network training and (ii) integrates methods that rigorously determine and reduce the worst-case constraint violations across the entire input domain, while maintaining the optimality of the prediction. We demonstrate how physics-informed neural networks achieve higher accuracy and lower constraint violations than standard neural networks, and show how we can further reduce the worst-case violations for all neural networks.

In spite of the enormous success of neural networks, adversarial examples remain a relatively weakly understood feature of deep learning systems. There is a considerable effort in both building more powerful adversarial attacks and designing methods to counter the effects of adversarial examples. We propose a method to transform the adversarial input data through a mixture of generators in order to recover the correct class obfuscated by the adversarial attack. A canonical set of images is used to generate adversarial examples through potentially multiple attacks. Such transformed images are processed by a set of generators, which are trained adversarially as a whole to compete in inverting the initial transformations. To our knowledge, this is the first use of a mixture-based adversarially trained system as a defense mechanism. We show that it is possible to train such a system without supervision, simultaneously on multiple adversarial attacks. Our system is able to recover class information for previously-unseen examples with neither attack nor data labels on the MNIST dataset. The results demonstrate that this multi-attack approach is competitive with adversarial defenses tested in single-attack settings.

In this paper, from a theoretical perspective, we study how powerful graph neural networks (GNNs) can be for learning approximation algorithms for combinatorial problems. To this end, we first establish a new class of GNNs that can solve strictly a wider variety of problems than existing GNNs. Then, we bridge the gap between GNN theory and the theory of distributed local algorithms to theoretically demonstrate that the most powerful GNN can learn approximation algorithms for the minimum dominating set problem and the minimum vertex cover problem with some approximation ratios and that no GNN can perform better than with these ratios. This paper is the first to elucidate approximation ratios of GNNs for combinatorial problems. Furthermore, we prove that adding coloring or weak-coloring to each node feature improves these approximation ratios. This indicates that preprocessing and feature engineering theoretically strengthen model capabilities.

In this work, we consider the distributed optimization of non-smooth convex functions using a network of computing units. We investigate this problem under two regularity assumptions: (1) the Lipschitz continuity of the global objective function, and (2) the Lipschitz continuity of local individual functions. Under the local regularity assumption, we provide the first optimal first-order decentralized algorithm called multi-step primal-dual (MSPD) and its corresponding optimal convergence rate. A notable aspect of this result is that, for non-smooth functions, while the dominant term of the error is in $O(1/\sqrt{t})$, the structure of the communication network only impacts a second-order term in $O(1/t)$, where $t$ is time. In other words, the error due to limits in communication resources decreases at a fast rate even in the case of non-strongly-convex objective functions. Under the global regularity assumption, we provide a simple yet efficient algorithm called distributed randomized smoothing (DRS) based on a local smoothing of the objective function, and show that DRS is within a $d^{1/4}$ multiplicative factor of the optimal convergence rate, where $d$ is the underlying dimension.

Many resource allocation problems in the cloud can be described as a basic Virtual Network Embedding Problem (VNEP): finding mappings of request graphs (describing the workloads) onto a substrate graph (describing the physical infrastructure). In the offline setting, the two natural objectives are profit maximization, i.e., embedding a maximal number of request graphs subject to the resource constraints, and cost minimization, i.e., embedding all requests at minimal overall cost. The VNEP can be seen as a generalization of classic routing and call admission problems, in which requests are arbitrary graphs whose communication endpoints are not fixed. Due to its applications, the problem has been studied intensively in the networking community. However, the underlying algorithmic problem is hardly understood. This paper presents the first fixed-parameter tractable approximation algorithms for the VNEP. Our algorithms are based on randomized rounding. Due to the flexible mapping options and the arbitrary request graph topologies, we show that a novel linear program formulation is required. Only using this novel formulation the computation of convex combinations of valid mappings is enabled, as the formulation needs to account for the structure of the request graphs. Accordingly, to capture the structure of request graphs, we introduce the graph-theoretic notion of extraction orders and extraction width and show that our algorithms have exponential runtime in the request graphs' maximal width. Hence, for request graphs of fixed extraction width, we obtain the first polynomial-time approximations. Studying the new notion of extraction orders we show that (i) computing extraction orders of minimal width is NP-hard and (ii) that computing decomposable LP solutions is in general NP-hard, even when restricting request graphs to planar ones.

北京阿比特科技有限公司