亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Topic modelling, as a well-established unsupervised technique, has found extensive use in automatically detecting significant topics within a corpus of documents. However, classic topic modelling approaches (e.g., LDA) have certain drawbacks, such as the lack of semantic understanding and the presence of overlapping topics. In this work, we investigate the untapped potential of large language models (LLMs) as an alternative for uncovering the underlying topics within extensive text corpora. To this end, we introduce a framework that prompts LLMs to generate topics from a given set of documents and establish evaluation protocols to assess the clustering efficacy of LLMs. Our findings indicate that LLMs with appropriate prompts can stand out as a viable alternative, capable of generating relevant topic titles and adhering to human guidelines to refine and merge topics. Through in-depth experiments and evaluation, we summarise the advantages and constraints of employing LLMs in topic extraction.

相關內容

Rapid progress in text-to-image generative models coupled with their deployment for visual content creation has magnified the importance of thoroughly evaluating their performance and identifying potential biases. In pursuit of models that generate images that are realistic, diverse, visually appealing, and consistent with the given prompt, researchers and practitioners often turn to automated metrics to facilitate scalable and cost-effective performance profiling. However, commonly-used metrics often fail to account for the full diversity of human preference; often even in-depth human evaluations face challenges with subjectivity, especially as interpretations of evaluation criteria vary across regions and cultures. In this work, we conduct a large, cross-cultural study to study how much annotators in Africa, Europe, and Southeast Asia vary in their perception of geographic representation, visual appeal, and consistency in real and generated images from state-of-the art public APIs. We collect over 65,000 image annotations and 20 survey responses. We contrast human annotations with common automated metrics, finding that human preferences vary notably across geographic location and that current metrics do not fully account for this diversity. For example, annotators in different locations often disagree on whether exaggerated, stereotypical depictions of a region are considered geographically representative. In addition, the utility of automatic evaluations is dependent on assumptions about their set-up, such as the alignment of feature extractors with human perception of object similarity or the definition of "appeal" captured in reference datasets used to ground evaluations. We recommend steps for improved automatic and human evaluations.

Foundation models have enormous potential in advancing Earth and climate sciences, however, current approaches may not be optimal as they focus on a few basic features of a desirable Earth and climate foundation model. Crafting the ideal Earth foundation model, we define eleven features which would allow such a foundation model to be beneficial for any geoscientific downstream application in an environmental- and human-centric manner.We further shed light on the way forward to achieve the ideal model and to evaluate Earth foundation models. What comes after foundation models? Energy efficient adaptation, adversarial defenses, and interpretability are among the emerging directions.

The past two decades have witnessed a surge of new research in the analysis of randomized experiments. The emergence of this literature may seem surprising given the widespread use and long history of experiments as the "gold standard" in program evaluation, but this body of work has revealed many subtle aspects of randomized experiments that may have been previously unappreciated. This article provides an overview of some of these topics, primarily focused on stratification, regression adjustment, and cluster randomization.

Tree graphs are routinely used in statistics. When estimating a Bayesian model with a tree component, sampling the posterior remains a core difficulty. Existing Markov chain Monte Carlo methods tend to rely on local moves, often leading to poor mixing. A promising approach is to instead directly sample spanning trees on an auxiliary graph. Current spanning tree samplers, such as the celebrated Aldous--Broder algorithm, predominantly rely on simulating random walks that are required to visit all the nodes of the graph. Such algorithms are prone to getting stuck in certain sub-graphs. We formalize this phenomenon using the bottlenecks in the random walk's transition probability matrix. We then propose a novel fast-forwarded cover algorithm that can break free from bottlenecks. The core idea is a marginalization argument that leads to a closed-form expression which allows for fast-forwarding to the event of visiting a new node. Unlike many existing approximation algorithms, our algorithm yields exact samples. We demonstrate the enhanced efficiency of the fast-forwarded cover algorithm, and illustrate its application in fitting a Bayesian dendrogram model on a Massachusetts crimes and communities dataset.

Diversity is a commonly known principle in the design of recommender systems, but also ambiguous in its conceptualization. Through semi-structured interviews we explore how practitioners at three different public service media organizations in the Netherlands conceptualize diversity within the scope of their recommender systems. We provide an overview of the goals that they have with diversity in their systems, which aspects are relevant, and how recommendations should be diversified. We show that even within this limited domain, conceptualization of diversity greatly varies, and argue that it is unlikely that a standardized conceptualization will be achieved. Instead, we should focus on effective communication of what diversity in this particular system means, thus allowing for operationalizations of diversity that are capable of expressing the nuances and requirements of that particular domain.

Testing conditional independence has many applications, such as in Bayesian network learning and causal discovery. Different test methods have been proposed. However, existing methods generally can not work when only discretized observations are available. Specifically, consider $X_1$, $\tilde{X}_2$ and $X_3$ are observed variables, where $\tilde{X}_2$ is a discretization of latent variables $X_2$. Applying existing test methods to the observations of $X_1$, $\tilde{X}_2$ and $X_3$ can lead to a false conclusion about the underlying conditional independence of variables $X_1$, $X_2$ and $X_3$. Motivated by this, we propose a conditional independence test specifically designed to accommodate the presence of such discretization. To achieve this, we design the bridge equations to recover the parameter reflecting the statistical information of the underlying latent continuous variables. An appropriate test statistic and its asymptotic distribution under the null hypothesis of conditional independence have also been derived. Both theoretical results and empirical validation have been provided, demonstrating the effectiveness of our test methods.

Unmanned Aerial Vehicles (UAVs) have emerged as a transformative technology across diverse sectors, offering adaptable solutions to complex challenges in both military and civilian domains. Their expanding capabilities present a platform for further advancement by integrating cutting-edge computational tools like Artificial Intelligence (AI) and Machine Learning (ML) algorithms. These advancements have significantly impacted various facets of human life, fostering an era of unparalleled efficiency and convenience. Large Language Models (LLMs), a key component of AI, exhibit remarkable learning and adaptation capabilities within deployed environments, demonstrating an evolving form of intelligence with the potential to approach human-level proficiency. This work explores the significant potential of integrating UAVs and LLMs to propel the development of autonomous systems. We comprehensively review LLM architectures, evaluating their suitability for UAV integration. Additionally, we summarize the state-of-the-art LLM-based UAV architectures and identify novel opportunities for LLM embedding within UAV frameworks. Notably, we focus on leveraging LLMs to refine data analysis and decision-making processes, specifically for enhanced spectral sensing and sharing in UAV applications. Furthermore, we investigate how LLM integration expands the scope of existing UAV applications, enabling autonomous data processing, improved decision-making, and faster response times in emergency scenarios like disaster response and network restoration. Finally, we highlight crucial areas for future research that are critical for facilitating the effective integration of LLMs and UAVs.

As artificial intelligence (AI) models continue to scale up, they are becoming more capable and integrated into various forms of decision-making systems. For models involved in moral decision-making, also known as artificial moral agents (AMA), interpretability provides a way to trust and understand the agent's internal reasoning mechanisms for effective use and error correction. In this paper, we provide an overview of this rapidly-evolving sub-field of AI interpretability, introduce the concept of the Minimum Level of Interpretability (MLI) and recommend an MLI for various types of agents, to aid their safe deployment in real-world settings.

Deep neural networks have revolutionized many machine learning tasks in power systems, ranging from pattern recognition to signal processing. The data in these tasks is typically represented in Euclidean domains. Nevertheless, there is an increasing number of applications in power systems, where data are collected from non-Euclidean domains and represented as the graph-structured data with high dimensional features and interdependency among nodes. The complexity of graph-structured data has brought significant challenges to the existing deep neural networks defined in Euclidean domains. Recently, many studies on extending deep neural networks for graph-structured data in power systems have emerged. In this paper, a comprehensive overview of graph neural networks (GNNs) in power systems is proposed. Specifically, several classical paradigms of GNNs structures (e.g., graph convolutional networks, graph recurrent neural networks, graph attention networks, graph generative networks, spatial-temporal graph convolutional networks, and hybrid forms of GNNs) are summarized, and key applications in power systems such as fault diagnosis, power prediction, power flow calculation, and data generation are reviewed in detail. Furthermore, main issues and some research trends about the applications of GNNs in power systems are discussed.

Object detection typically assumes that training and test data are drawn from an identical distribution, which, however, does not always hold in practice. Such a distribution mismatch will lead to a significant performance drop. In this work, we aim to improve the cross-domain robustness of object detection. We tackle the domain shift on two levels: 1) the image-level shift, such as image style, illumination, etc, and 2) the instance-level shift, such as object appearance, size, etc. We build our approach based on the recent state-of-the-art Faster R-CNN model, and design two domain adaptation components, on image level and instance level, to reduce the domain discrepancy. The two domain adaptation components are based on H-divergence theory, and are implemented by learning a domain classifier in adversarial training manner. The domain classifiers on different levels are further reinforced with a consistency regularization to learn a domain-invariant region proposal network (RPN) in the Faster R-CNN model. We evaluate our newly proposed approach using multiple datasets including Cityscapes, KITTI, SIM10K, etc. The results demonstrate the effectiveness of our proposed approach for robust object detection in various domain shift scenarios.

北京阿比特科技有限公司