亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

5G radio access network (RAN) with network slicing methodology plays a key role in the development of the next-generation network system. RAN slicing focuses on splitting the substrate's resources into a set of self-contained programmable RAN slices. Leveraged by network function virtualization (NFV), a RAN slice is constituted by various virtual network functions (VNFs) and virtual links that are embedded as instances on substrate nodes. In this work, we focus on the following fundamental tasks: i) establishing the theoretical foundation for constructing a VNF mapping plan for RAN slice recovery optimization and ii) developing algorithms needed to map/embed VNFs efficiently. In particular, we propose four efficient algorithms, including Resource-based Algorithm (RBA), Connectivity-based Algorithm (CBA), Group-based Algorithm (GBA), and Group-Connectivity-based Algorithm (GCBA) to solve the resource allocation and VNF mapping problem. Extensive experiments are also conducted to validate the robustness of RAN slicing via the proposed algorithms.

相關內容

Networking:IFIP International Conferences on Networking。 Explanation:國際網(wang)絡會議(yi)。 Publisher:IFIP。 SIT:

The brain age has been proven to be a phenotype of relevance to cognitive performance and brain disease. Achieving accurate brain age prediction is an essential prerequisite for optimizing the predicted brain-age difference as a biomarker. As a comprehensive biological characteristic, the brain age is hard to be exploited accurately with models using feature engineering and local processing such as local convolution and recurrent operations that process one local neighborhood at a time. Instead, Vision Transformers learn global attentive interaction of patch tokens, introducing less inductive bias and modeling long-range dependencies. In terms of this, we proposed a novel network for learning brain age interpreting with global and local dependencies, where the corresponding representations are captured by Successive Permuted Transformer (SPT) and convolution blocks. The SPT brings computation efficiency and locates the 3D spatial information indirectly via continuously encoding 2D slices from different views. Finally, we collect a large cohort of 22645 subjects with ages ranging from 14 to 97 and our network performed the best among a series of deep learning methods, yielding a mean absolute error (MAE) of 2.855 in validation set, and 2.911 in an independent test set.

Node clustering is a powerful tool in the analysis of networks. We introduce a graph neural network framework to obtain node embeddings for directed networks in a self-supervised manner, including a novel probabilistic imbalance loss, which can be used for network clustering. Here, we propose directed flow imbalance measures, which are tightly related to directionality, to reveal clusters in the network even when there is no density difference between clusters. In contrast to standard approaches in the literature, in this paper, directionality is not treated as a nuisance, but rather contains the main signal. DIGRAC optimizes directed flow imbalance for clustering without requiring label supervision, unlike existing graph neural network methods, and can naturally incorporate node features, unlike existing spectral methods. Extensive experimental results on synthetic data, in the form of directed stochastic block models, and real-world data at different scales, demonstrate that our method, based on flow imbalance, attains state-of-the-art results on directed graph clustering when compared against 10 state-of-the-art methods from the literature, for a wide range of noise and sparsity levels, graph structures and topologies, and even outperforms supervised methods.

Well-designed simultaneously transmitting and reflecting RIS (STAR-RIS), which extends the half-space coverage to full-space coverage, incurs wireless communication environments to be smart and reconfigurable. In this paper, we survey how STAR-RIS affects the performance of full-duplex communication systems with the presence of full-duplex users, wherein the base station (BS) and the uplink users are subject to maximum transmission power constraints. Firstly, the weighted sum-rate (WSR) is derived as a system performance metric. Then, we formulate the resource allocation design into an equivalent weighted minimum mean-square-error form and then transform it into several convex sub-problems to maximize the WSR as an optimization problem which jointly optimizes the beamforming and the combining vectors at the BS, the transmit powers of the uplink users, and phase shifts of STAR-RIS. Although the WSR optimization is non-convex, an efficient iterative alternating procedure is proposed to achieve a sub-optimal solution for the optimization problem. Secondly, the STAR-RIS's phase shifts are optimized via the successive convex approximation technique. Finally, numerical results are provided to explain how STAR-RIS improves the performance metric with the presence of full-duplex users.

The task of joining two tables is fundamental for querying databases. In this paper, we focus on the equi-join problem, where a pair of records from the two joined tables are part of the join results if equality holds between their values in the join column(s). While this is a tractable problem when the number of records in the joined tables is relatively small, it becomes very challenging as the table sizes increase, especially if hot keys (join column values with a large number of records) exist in both joined tables. This paper, an extended version of [metwally-SIGMOD-2022], proposes Adaptive-Multistage-Join (AM-Join) for scalable and fast equi-joins in distributed shared-nothing architectures. AM-Join utilizes (a) Tree-Join, a proposed novel algorithm that scales well when the joined tables share hot keys, and (b) Broadcast-Join, the known fastest when joining keys that are hot in only one table. Unlike the state-of-the-art algorithms, AM-Join (a) holistically solves the join-skew problem by achieving load balancing throughout the join execution, and (b) supports all outer-join variants without record deduplication or custom table partitioning. For the fastest AM-Join outer-join performance, we propose the Index-Broadcast-Join (IB-Join) family of algorithms for Small-Large joins, where one table fits in memory and the other can be up to orders of magnitude larger. The outer-join variants of IB-Join improves on the state-of-the-art Small-Large outer-join algorithms. The proposed algorithms can be adopted in any shared-nothing architecture. We implemented a MapReduce version using Spark. Our evaluation shows the proposed algorithms execute significantly faster and scale to more skewed and orders-of-magnitude bigger tables when compared to the state-of-the-art algorithms.

Connectivity augmentation problems are among the most elementary questions in Network Design. Many of these problems admit natural $2$-approximation algorithms, often through various classic techniques, whereas it remains open whether approximation factors below $2$ can be achieved. One of the most basic examples thereof is the Weighted Connectivity Augmentation Problem (WCAP). In WCAP, one is given an undirected graph together with a set of additional weighted candidate edges, and the task is to find a cheapest set of candidate edges whose addition to the graph increases its edge-connectivity. We present a $(1.5+\varepsilon)$-approximation algorithm for WCAP, showing for the first time that factors below $2$ are achievable. On a high level, we design a well-chosen local search algorithm, inspired by recent advances for Weighted Tree Augmentation. To measure progress, we consider a directed weakening of WCAP and show that it has highly structured planar solutions. Interpreting a solution of the original problem as one of this directed weakening allows us to describe local exchange steps in a clean and algorithmically amenable way. Leveraging these insights, we show that we can efficiently search for good exchange steps within a component class for link sets that is closely related to bounded treewidth subgraphs of circle graphs. Moreover, we prove that an optimum solution can be decomposed into smaller components, at least one of which leads to a good local search step as long as we did not yet achieve the claimed approximation guarantee.

Two strings $x$ and $y$ over $\Sigma \cup \Pi$ of equal length are said to \emph{parameterized match} (\emph{p-match}) if there is a renaming bijection $f:\Sigma \cup \Pi \rightarrow \Sigma \cup \Pi$ that is identity on $\Sigma$ and transforms $x$ to $y$ (or vice versa). The \emph{p-matching} problem is to look for substrings in a text that p-match a given pattern. In this paper, we propose \emph{parameterized suffix automata} (\emph{p-suffix automata}) and \emph{parameterized directed acyclic word graphs} (\emph{PDAWGs}) which are the p-matching versions of suffix automata and DAWGs. While suffix automata and DAWGs are equivalent for standard strings, we show that p-suffix automata can have $\Theta(n^2)$ nodes and edges but PDAWGs have only $O(n)$ nodes and edges, where $n$ is the length of an input string. We also give an $O(n |\Pi| \log (|\Pi| + |\Sigma|))$-time $O(n)$-space algorithm that builds the PDAWG in a left-to-right online manner. As a byproduct, it is shown that the \emph{parameterized suffix tree} for the reversed string can also be built in the same time and space, in a right-to-left online manner. This duality also leads us to two further efficient algorithms for p-matching: Given the parameterized suffix tree for the reversal of the input string $T$, one can build the PDAWG of $T$ in $O(n)$ time in an offline manner; One can perform \emph{bidirectional} p-matching in $O(m \log (|\Pi|+|\Sigma|) + \mathit{occ})$ time using $O(n)$ space, where $m$ denotes the pattern length and $\mathit{occ}$ is the number of pattern occurrences in the text $T$.

We develop a new formulation of deep learning based on the Mori-Zwanzig (MZ) formalism of irreversible statistical mechanics. The new formulation is built upon the well-known duality between deep neural networks and discrete stochastic dynamical systems, and it allows us to directly propagate quantities of interest (conditional expectations and probability density functions) forward and backward through the network by means of exact linear operator equations. Such new equations can be used as a starting point to develop new effective parameterizations of deep neural networks, and provide a new framework to study deep-learning via operator theoretic methods. The proposed MZ formulation of deep learning naturally introduces a new concept, i.e., the memory of the neural network, which plays a fundamental role in low-dimensional modeling and parameterization. By using the theory of contraction mappings, we develop sufficient conditions for the memory of the neural network to decay with the number of layers. This allows us to rigorously transform deep networks into shallow ones, e.g., by reducing the number of neurons per layer (using projection operators), or by reducing the total number of layers (using the decay property of the memory operator).

Much of the literature on optimal design of bandit algorithms is based on minimization of expected regret. It is well known that designs that are optimal over certain exponential families can achieve expected regret that grows logarithmically in the number of arm plays, at a rate governed by the Lai-Robbins lower bound. In this paper, we show that when one uses such optimized designs, the regret distribution of the associated algorithms necessarily has a very heavy tail, specifically, that of a truncated Cauchy distribution. Furthermore, for $p>1$, the $p$'th moment of the regret distribution grows much faster than poly-logarithmically, in particular as a power of the total number of arm plays. We show that optimized UCB bandit designs are also fragile in an additional sense, namely when the problem is even slightly mis-specified, the regret can grow much faster than the conventional theory suggests. Our arguments are based on standard change-of-measure ideas, and indicate that the most likely way that regret becomes larger than expected is when the optimal arm returns below-average rewards in the first few arm plays, thereby causing the algorithm to believe that the arm is sub-optimal. To alleviate the fragility issues exposed, we show that UCB algorithms can be modified so as to ensure a desired degree of robustness to mis-specification. In doing so, we also provide a sharp trade-off between the amount of UCB exploration and the tail exponent of the resulting regret distribution.

The parameters of the log-logistic distribution are generally estimated based on classical methods such as maximum likelihood estimation, whereas these methods usually result in severe biased estimates when the data contain outliers. In this paper, we consider several alternative estimators, which not only have closed-form expressions, but also are quite robust to a certain level of data contamination. We investigate the robustness property of each estimator in terms of the breakdown point. The finite sample performance and effectiveness of these estimators are evaluated through Monte Carlo simulations and a real-data application. Numerical results demonstrate that the proposed estimators perform favorably in a manner that they are comparable with the maximum likelihood estimator for the data without contamination and that they provide superior performance in the presence of data contamination.

Image-to-image translation (I2I) aims to transfer images from a source domain to a target domain while preserving the content representations. I2I has drawn increasing attention and made tremendous progress in recent years because of its wide range of applications in many computer vision and image processing problems, such as image synthesis, segmentation, style transfer, restoration, and pose estimation. In this paper, we provide an overview of the I2I works developed in recent years. We will analyze the key techniques of the existing I2I works and clarify the main progress the community has made. Additionally, we will elaborate on the effect of I2I on the research and industry community and point out remaining challenges in related fields.

北京阿比特科技有限公司