We develop a model of coordination and allocation of decentralized multi-sided markets, in which our theoretical analysis is promisingly optimizing the decentralized transaction packaging process at high-throughput blockchains or Web 3.0 platforms. In contrast to the stylized centralized platform, the decentralized platform is powered by blockchain technology, which allows for secure and transparent Peer-to-Peer transactions among users. Traditional single-chain-based blockchains suffer from the well-known blockchain trilemma. Beyond the single-chain-based scheme, decentralized high-throughput blockchains adopt parallel protocols to reconcile the blockchain trilemma, implementing any tasking and desired allocation. However, unneglectable network latency may induce partial observability, resulting in incoordination and misallocation issues for the decentralized transaction packaging process at the current high-throughput blockchain protocols. To address this problem, we consider a strategic coordination mechanism for the decentralized transaction packaging process by using a game-theoretic approach. Under a tractable two-period model, we find a Bayesian Nash equilibrium of the miner's strategic transaction packaging under partial observability. Along with novel algorithms for computing equilibrium payoffs, we show that the decentralized platform can achieve an efficient and stable market outcome. The model also highlights that the proposed mechanism can endogenously offer a base fee per gas without any restructuration of the initial blockchain transaction fee mechanism. The theoretical results that underlie the algorithms also imply bounds on the computational complexity of equilibrium payoffs.
New emerging technologies powered by Artificial Intelligence (AI) have the potential to disruptively transform our societies for the better. In particular, data-driven learning approaches (i.e., Machine Learning (ML)) have been a true revolution in the advancement of multiple technologies in various application domains. But at the same time there is growing concern about certain intrinsic characteristics of these methodologies that carry potential risks to both safety and fundamental rights. Although there are mechanisms in the adoption process to minimize these risks (e.g., safety regulations), these do not exclude the possibility of harm occurring, and if this happens, victims should be able to seek compensation. Liability regimes will therefore play a key role in ensuring basic protection for victims using or interacting with these systems. However, the same characteristics that make AI systems inherently risky, such as lack of causality, opacity, unpredictability or their self and continuous learning capabilities, may lead to considerable difficulties when it comes to proving causation. This paper presents three case studies, as well as the methodology to reach them, that illustrate these difficulties. Specifically, we address the cases of cleaning robots, delivery drones and robots in education. The outcome of the proposed analysis suggests the need to revise liability regimes to alleviate the burden of proof on victims in cases involving AI technologies.
Many complex engineering systems can be represented in a topological form, such as graphs. This paper utilizes a machine learning technique called Geometric Deep Learning (GDL) to aid designers with challenging, graph-centric design problems. The strategy presented here is to take the graph data and apply GDL to seek the best realizable performing solution effectively and efficiently with lower computational costs. This case study used here is the synthesis of analog electrical circuits that attempt to match a specific frequency response within a particular frequency range. Previous studies utilized an enumeration technique to generate 43,249 unique undirected graphs presenting valid potential circuits. Unfortunately, determining the sizing and performance of many circuits can be too expensive. To reduce computational costs with a quantified trade-off in accuracy, the fraction of the circuit graphs and their performance are used as input data to a classification-focused GDL model. Then, the GDL model can be used to predict the remainder cheaply, thus, aiding decision-makers in the search for the best graph solutions. The results discussed in this paper show that additional graph-based features are useful, favorable total set classification accuracy of 80\% in using only 10\% of the graphs, and iteratively-built GDL models can further subdivide the graphs into targeted groups with medians significantly closer to the best graph and containing 87 of the top 100 best performing graphs.
Since 2021, the term "Metaverse" has been the most popular one, garnering a lot of interest. Because of its contained environment and built-in computing and networking capabilities, a modern car makes an intriguing location to host its own little metaverse. Additionally, the travellers don't have much to do to pass the time while traveling, making them ideal customers for immersive services. Vetaverse (Vehicular-Metaverse), which we define as the future continuum between vehicular industries and Metaverse, is envisioned as a blended immersive realm that scales up to cities and countries, as digital twins of the intelligent Transportation Systems, referred to as "TS-Metaverse", as well as customized XR services inside each Individual Vehicle, referred to as "IV-Metaverse". The two subcategories serve fundamentally different purposes, namely long-term interconnection, maintenance, monitoring, and management on scale for large transportation systems (TS), and personalized, private, and immersive infotainment services (IV). By outlining the framework of Vetaverse and examining important enabler technologies, we reveal this impending trend. Additionally, we examine unresolved issues and potential routes for future study while highlighting some intriguing Vetaverse services.
Currently, inter-organizational process collaboration (IOPC) has been widely used in the design and development of distributed systems that support business process execution. Blockchain-based IOPC can establish trusted data sharing among participants, attracting more and more attention. The core of such study is to translate the graphical model (e.g., BPMN) into program code called smart contract that can be executed in the blockchain environment. In this context, a proper smart contract plays a vital role in the correct implementation of block-chain-based IOPC. In fact, the quality of graphical model affects the smart con-tract generation. Problematic models (e.g., deadlock) will result in incorrect contracts (causing unexpected behaviours). To avoid this undesired implementation, this paper explores to generate smart contracts by using the verified formal model as input instead of graphical model. Specifically, we introduce a prototype framework that supports the automatic generation of smart contracts, providing an end-to-end solution from modeling, verification, translation to implementation. One of the cores of this framework is to provide a CSP#-based formalization for the BPMN collaboration model from the perspective of message interaction. This formalization provides precise execution semantics and model verification for graphical models, and a verified formal model for smart contract generation. Another novelty is that it introduces a syntax tree-based translation algorithm to directly map the formal model into a smart contract. The required formalism, verification and translation techniques are transparent to users without imposing additional burdens. Finally, a set of experiments shows the effectiveness of the framework.
Many machine learning problems can be framed in the context of estimating functions, and often these are time-dependent functions that are estimated in real-time as observations arrive. Gaussian processes (GPs) are an attractive choice for modeling real-valued nonlinear functions due to their flexibility and uncertainty quantification. However, the typical GP regression model suffers from several drawbacks: 1) Conventional GP inference scales $O(N^{3})$ with respect to the number of observations; 2) Updating a GP model sequentially is not trivial; and 3) Covariance kernels typically enforce stationarity constraints on the function, while GPs with non-stationary covariance kernels are often intractable to use in practice. To overcome these issues, we propose a sequential Monte Carlo algorithm to fit infinite mixtures of GPs that capture non-stationary behavior while allowing for online, distributed inference. Our approach empirically improves performance over state-of-the-art methods for online GP estimation in the presence of non-stationarity in time-series data. To demonstrate the utility of our proposed online Gaussian process mixture-of-experts approach in applied settings, we show that we can sucessfully implement an optimization algorithm using online Gaussian process bandits.
The global pandemic situation has severely affected all countries. As a result, almost all countries had to adjust to online technologies to continue their processes. In addition, Sri Lanka is yearly spending ten billion on elections. We have examined a proper way of minimizing the cost of hosting these events online. To solve the existing problems and increase the time potency and cost reduction we have used IoT and ML-based technologies. IoT-based data will identify, register, and be used to secure from fraud, while ML algorithms manipulate the election data and produce winning predictions, weather-based voters attendance, and election violence. All the data will be saved in cloud computing and a standard database to store and access the data. This study mainly focuses on four aspects of an E-voting system. The most frequent problems across the world in E-voting are the security, accuracy, and reliability of the systems. E-government systems must be secured against various cyber-attacks and ensure that only authorized users can access valuable, and sometimes sensitive information. Being able to access a system without passwords but using biometric details has been there for a while now, however, our proposed system has a different approach to taking the credentials, processing, and combining the images, reformatting and producing the output, and tracking. In addition, we ensure to enhance e-voting safety. While ML-based algorithms use different data sets and provide predictions in advance.
Heterogeneity has become a mainstream architecture design choice for building High Performance Computing systems. However, heterogeneity poses significant challenges for achieving performance portability of execution. Adapting a program to a new heterogeneous platform is laborious and requires developers to manually explore a vast space of execution parameters. To address those challenges, this paper proposes new extensions to OpenMP for autonomous, machine learning-driven adaptation. Our solution includes a set of novel language constructs, compiler transformations, and runtime support. We propose a producer-consumer pattern to flexibly define multiple, different variants of OpenMP code regions to enable adaptation. Those regions are transparently profiled at runtime to autonomously learn optimizing machine learning models that dynamically select the fastest variant. Our approach significantly reduces users' efforts of programming adaptive applications on heterogeneous architectures by leveraging machine learning techniques and code generation capabilities of OpenMP compilation. Using a complete reference implementation in Clang/LLVM we evaluate three use-cases of adaptive CPU-GPU execution. Experiments with HPC proxy applications and benchmarks demonstrate that the proposed adaptive OpenMP extensions automatically choose the best performing code variants for various adaptation possibilities, in several different heterogeneous platforms of CPUs and GPUs.
With the rapid advancement of 5G networks, billions of smart Internet of Things (IoT) devices along with an enormous amount of data are generated at the network edge. While still at an early age, it is expected that the evolving 6G network will adopt advanced artificial intelligence (AI) technologies to collect, transmit, and learn this valuable data for innovative applications and intelligent services. However, traditional machine learning (ML) approaches require centralizing the training data in the data center or cloud, raising serious user-privacy concerns. Federated learning, as an emerging distributed AI paradigm with privacy-preserving nature, is anticipated to be a key enabler for achieving ubiquitous AI in 6G networks. However, there are several system and statistical heterogeneity challenges for effective and efficient FL implementation in 6G networks. In this article, we investigate the optimization approaches that can effectively address the challenging heterogeneity issues from three aspects: incentive mechanism design, network resource management, and personalized model optimization. We also present some open problems and promising directions for future research.
Propelled by the omnipresence of versatile data capture, communication, and computing technologies, physical sensing has revolutionized the avenue for decisively interpreting the real world. However, various limitations hinder physical sensing's effectiveness in critical scenarios such as disaster response and urban anomaly detection. Meanwhile, social sensing is contriving as a pervasive sensing paradigm leveraging observations from human participants equipped with portable devices and ubiquitous Internet connectivity to perceive the environment. Despite its virtues, social sensing also inherently suffers from a few drawbacks (e.g., inconsistent reliability and uncertain data provenance). Motivated by the complementary strengths of the two sensing modes, social-physical sensing (SPS) is protruding as an emerging sensing paradigm that explores the collective intelligence of humans and machines to reconstruct the "state of the world", both physically and socially. While a good number of interesting SPS applications have been studied, several critical unsolved challenges still exist in SPS. In this paper, we provide a comprehensive survey of SPS, emphasizing its definition, key enablers, state-of-the-art applications, potential research challenges, and roadmap for future work. This paper intends to bridge the knowledge gap of existing sensing-focused survey papers by thoroughly examining the various aspects of SPS crucial for building potent SPS systems.
This paper focuses on the expected difference in borrower's repayment when there is a change in the lender's credit decisions. Classical estimators overlook the confounding effects and hence the estimation error can be magnificent. As such, we propose another approach to construct the estimators such that the error can be greatly reduced. The proposed estimators are shown to be unbiased, consistent, and robust through a combination of theoretical analysis and numerical testing. Moreover, we compare the power of estimating the causal quantities between the classical estimators and the proposed estimators. The comparison is tested across a wide range of models, including linear regression models, tree-based models, and neural network-based models, under different simulated datasets that exhibit different levels of causality, different degrees of nonlinearity, and different distributional properties. Most importantly, we apply our approaches to a large observational dataset provided by a global technology firm that operates in both the e-commerce and the lending business. We find that the relative reduction of estimation error is strikingly substantial if the causal effects are accounted for correctly.