Dyck reachability is a principled, graph-based formulation of a plethora of static analyses. Bidirected graphs are used for capturing dataflow through mutable heap data, and are usual formalisms of demand-driven points-to and alias analyses. The best (offline) algorithm runs in $O(m+n\cdot \alpha(n))$ time, where $n$ is the number of nodes and $m$ is the number of edges in the flow graph, which becomes $O(n^2)$ in the worst case. In the everyday practice of program analysis, the analyzed code is subject to continuous change, with source code being added and removed. On-the-fly static analysis under such continuous updates gives rise to dynamic Dyck reachability, where reachability queries run on a dynamically changing graph, following program updates. Naturally, executing the offline algorithm in this online setting is inadequate, as the time required to process a single update is prohibitively large. In this work we develop a novel dynamic algorithm for bidirected Dyck reachability that has $O(n\cdot \alpha(n))$ worst-case performance per update, thus beating the $O(n^2)$ bound, and is also optimal in certain settings. We also implement our algorithm and evaluate its performance on on-the-fly data-dependence and alias analyses, and compare it with two best known alternatives, namely (i) the optimal offline algorithm, and (ii) a fully dynamic Datalog solver. Our experiments show that our dynamic algorithm is consistently, and by far, the top performing algorithm, exhibiting speedups in the order of 1000X. The running time of each update is almost always unnoticeable to the human eye, making it ideal for the on-the-fly analysis setting.
Generative diffusion models can serve as a prior which ensures that solutions of image restoration systems adhere to the manifold of natural images. However, for restoring facial images, a personalized prior is necessary to accurately represent and reconstruct unique facial features of a given individual. In this paper, we propose a simple, yet effective, method for personalized restoration, called Dual-Pivot Tuning - a two-stage approach that personalize a blind restoration system while maintaining the integrity of the general prior and the distinct role of each component. Our key observation is that for optimal personalization, the generative model should be tuned around a fixed text pivot, while the guiding network should be tuned in a generic (non-personalized) manner, using the personalized generative model as a fixed ``pivot". This approach ensures that personalization does not interfere with the restoration process, resulting in a natural appearance with high fidelity to the person's identity and the attributes of the degraded image. We evaluated our approach both qualitatively and quantitatively through extensive experiments with images of widely recognized individuals, comparing it against relevant baselines. Surprisingly, we found that our personalized prior not only achieves higher fidelity to identity with respect to the person's identity, but also outperforms state-of-the-art generic priors in terms of general image quality. Project webpage: //personalized-restoration.github.io
Linear arrangements of graphs are a well-known type of graph labeling and are found at the heart of many important computational problems, such as the Minimum Linear Arrangement Problem ($\texttt{minLA}$). A linear arrangement is usually defined as a permutation of the $n$ vertices of a graph. An intuitive geometric setting is that of vertices lying on consecutive integer positions in the real line, starting at 1; edges are often drawn as semicircles above the real line. In this paper we study the Maximum Linear Arrangement problem ($\texttt{MaxLA}$), the maximization variant of $\texttt{minLA}$. We devise a new characterization of maximum arrangements of general graphs, and prove that $\texttt{MaxLA}$ can be solved for cycle graphs in constant time, and for $k$-linear trees ($k\le2$) in time $O(n)$. We present two constrained variants of $\texttt{MaxLA}$ we call $\texttt{bipartite MaxLA}$ and $\texttt{1-thistle MaxLA}$. We prove that the former can be solved in $O(n)$ for any bipartite graph; the latter, by an algorithm that typically runs in $O(n^3)$ on unlabelled trees. The combination of the two variants has two promising characteristics. First, it solves $\texttt{MaxLA}$ for almost all trees consisting of a few tenths of nodes. Second, it produces a high quality approximation to $\texttt{MaxLA}$ for trees where the algorithm fails to solve $\texttt{MaxLA}$. Furthermore, we conjecture that $\texttt{bipartite MaxLA}$ solves $\texttt{MaxLA}$ for at least $50\%$ of all free trees.
We consider estimation of a functional parameter of a realistically modeled data distribution based on independent and identically distributed observations. Suppose that the true function is defined as the minimizer of the expectation of a specified loss function over its parameter space. Estimators of the true function are provided, viewed as a data-adaptive coordinate transformation for the true function. For any $J$-dimensional real valued cadlag function with finite sectional variation norm, we define a candidate ensemble estimator as the mapping from the data into the composition of the cadlag function and the $J$ estimated functions. Using $V$-fold cross-validation, we define the cross-validated empirical risk of each cadlag function specific ensemble estimator. We then define the Meta Highly Adaptive Lasso Minimum Loss Estimator (M-HAL-MLE) as the cadlag function that minimizes this cross-validated empirical risk over all cadlag functions with a uniform bound on the sectional variation norm. For each of the $V$ training samples, this yields a composition of the M-HAL-MLE ensemble and the $J$ estimated functions trained on the training sample. We can estimate the true function with the average of these $V$ estimated functions, which we call the M-HAL super-learner. The M-HAL super-learner converges to the oracle estimator at a rate $n^{-2/3}$ (up till $\log n$-factor) w.r.t. excess risk, where the oracle estimator minimizes the excess risk among all considered ensembles. The excess risk of the oracle estimator and true function is generally second order. Under weak conditions on the $J$ candidate estimators, target features of the undersmoothed M-HAL super-learner are asymptotically linear estimators of the corresponding target features of true function, with influence curve either the efficient influence curve, or potentially, a super-efficient influence curve.
Learning a graph from data is the key to taking advantage of graph signal processing tools. Most of the conventional algorithms for graph learning require complete data statistics, which might not be available in some scenarios. In this work, we aim to learn a graph from incomplete time-series observations. From another viewpoint, we consider the problem of semi-blind recovery of time-varying graph signals where the underlying graph model is unknown. We propose an algorithm based on the method of block successive upperbound minimization (BSUM), for simultaneous inference of the signal and the graph from incomplete data. Simulation results on synthetic and real time-series demonstrate the performance of the proposed method for graph learning and signal recovery.
We investigate the problem of multiplex graph embedding, that is, graphs in which nodes interact through multiple types of relations (dimensions). In recent years, several methods have been developed to address this problem. However, the need for more effective and specialized approaches grows with the production of graph data with diverse characteristics. In particular, real-world multiplex graphs may exhibit a high number of dimensions, making it difficult to construct a single consensus representation. Furthermore, important information can be hidden in complex latent structures scattered in multiple dimensions. To address these issues, we propose HMGE, a novel embedding method based on hierarchical aggregation for high-dimensional multiplex graphs. Hierarchical aggregation consists of learning a hierarchical combination of the graph dimensions and refining the embeddings at each hierarchy level. Non-linear combinations are computed from previous ones, thus uncovering complex information and latent structures hidden in the multiplex graph dimensions. Moreover, we leverage mutual information maximization between local patches and global summaries to train the model without supervision. This allows to capture of globally relevant information present in diverse locations of the graph. Detailed experiments on synthetic and real-world data illustrate the suitability of our approach to downstream supervised tasks, including link prediction and node classification.
Minimum Spanning Trees are a well-studied subset of graph problems. While classical algorithms have existed to solve these problems for decades, new variations and application areas are constantly being discovered. When dealing with large graph problems, however, memory constraints can often be limiting, especially when using these classical methods in memory restricted environments. In this work, we propose an augmentation of Prim's algorithm that can be empirically shown to solve MST problems with a reduction in auxiliary memory usage of over 90%, and a margin of error of less than 0.3%.
Audit logs are one of the most important tools for transparently tracking system events and maintaining continuous oversight in corporate organizations and enterprise business systems. There are many cases where the audit logs contain sensitive data, or the audit logs are enormous. In these situations, dealing with a subset of the data is more practical than the entire data set. To provide a secure solution to handle these issues, a sanitizable signature scheme (SSS) is a viable cryptographic primitive. Herein, we first present the \textit{first} post-quantum secure multivariate-based SSS, namely ${\sf Mul-SAN}$. Our proposed design provides unforgeability, privacy, immutability, signer accountability, and sanitizer accountability under the assumption that the $MQ$ problem is NP-hard. ${\sf Mul-SAN}$ is very efficient and only requires computing field multiplications and additions over a finite field for its implementation. ${\sf Mul-SAN}$ presents itself as a practical method to partially delegate control of the authenticated data in avenues like the healthcare industry and government organizations. We also explore using Blockchain to provide a tamper-proof and robust audit log mechanism.
Knowledge graphs (KGs) serve as useful resources for various natural language processing applications. Previous KG completion approaches require a large number of training instances (i.e., head-tail entity pairs) for every relation. The real case is that for most of the relations, very few entity pairs are available. Existing work of one-shot learning limits method generalizability for few-shot scenarios and does not fully use the supervisory information; however, few-shot KG completion has not been well studied yet. In this work, we propose a novel few-shot relation learning model (FSRL) that aims at discovering facts of new relations with few-shot references. FSRL can effectively capture knowledge from heterogeneous graph structure, aggregate representations of few-shot references, and match similar entity pairs of reference set for every relation. Extensive experiments on two public datasets demonstrate that FSRL outperforms the state-of-the-art.
Learning latent representations of nodes in graphs is an important and ubiquitous task with widespread applications such as link prediction, node classification, and graph visualization. Previous methods on graph representation learning mainly focus on static graphs, however, many real-world graphs are dynamic and evolve over time. In this paper, we present Dynamic Self-Attention Network (DySAT), a novel neural architecture that operates on dynamic graphs and learns node representations that capture both structural properties and temporal evolutionary patterns. Specifically, DySAT computes node representations by jointly employing self-attention layers along two dimensions: structural neighborhood and temporal dynamics. We conduct link prediction experiments on two classes of graphs: communication networks and bipartite rating networks. Our experimental results show that DySAT has a significant performance gain over several different state-of-the-art graph embedding baselines.
We consider the problem of referring image segmentation. Given an input image and a natural language expression, the goal is to segment the object referred by the language expression in the image. Existing works in this area treat the language expression and the input image separately in their representations. They do not sufficiently capture long-range correlations between these two modalities. In this paper, we propose a cross-modal self-attention (CMSA) module that effectively captures the long-range dependencies between linguistic and visual features. Our model can adaptively focus on informative words in the referring expression and important regions in the input image. In addition, we propose a gated multi-level fusion module to selectively integrate self-attentive cross-modal features corresponding to different levels in the image. This module controls the information flow of features at different levels. We validate the proposed approach on four evaluation datasets. Our proposed approach consistently outperforms existing state-of-the-art methods.