Recent studies have uncovered that language model distillation is less effective when facing a large capacity gap between the teacher and the student, and introduced teacher assistant-based distillation to bridge the gap. As a connection, the scale and the performance of the teacher assistant is of vital importance to bring the knowledge from the teacher to the student. However, existing teacher assistant-based methods require maximally many trials before scheduling an optimal teacher assistant. To this end, we propose a minimal distillation schedule (MiniDisc) for scheduling the optimal teacher assistant in minimally one trial. In particular, motivated by the finding that the performance of the student is positively correlated to the scale-performance tradeoff of the teacher assistant, MiniDisc is designed with a $\lambda$-tradeoff to measure the optimality of the teacher assistant without trial distillation to the student. MiniDisc then can schedule the optimal teacher assistant with the best $\lambda$-tradeoff in a sandwich framework. MiniDisc is evaluated with an extensive set of experiments on GLUE. Experimental results demonstrate the improved efficiency our MiniDisc compared to several state-of-the-art baselines. We further apply MiniDisc to a language model with billions of parameters and show its scalability.
Large language models (LLMs) are prone to hallucinations, i.e., nonsensical, unfaithful, and undesirable text. Users tend to overrely on LLMs and corresponding hallucinations which can lead to misinterpretations and errors. To tackle the problem of overreliance, we propose HILL, the "Hallucination Identifier for Large Language Models". First, we identified design features for HILL with a Wizard of Oz approach with nine participants. Subsequently, we implemented HILL based on the identified design features and evaluated HILL's interface design by surveying 17 participants. Further, we investigated HILL's functionality to identify hallucinations based on an existing question-answering dataset and five user interviews. We find that HILL can correctly identify and highlight hallucinations in LLM responses which enables users to handle LLM responses with more caution. With that, we propose an easy-to-implement adaptation to existing LLMs and demonstrate the relevance of user-centered designs of AI artifacts.
Recent large language models (LLMs) such as ChatGPT and LLaMA have shown great promise in many AI applications. However, their performance on medical tasks is suboptimal and can be improved by training on extensive domain-specific datasets. This study introduces Me LLaMA, a medical LLM family that includes foundation models - Me LLaMA 13/70B, along with their chat-enhanced versions - Me LLaMA 13/70B-chat, developed through continual pre-training and instruction tuning of LLaMA2 using large medical datasets. Our domain-specific data suite for training and evaluation includes a large-scale, continual pre-training dataset with 129B tokens, an instruction tuning dataset with 214k samples, and a new medical evaluation benchmark (MIBE) across six tasks with 12 datasets. Our extensive evaluation using the MIBE shows that Me LLaMA models achieve overall better performance than existing open-source medical LLMs in zero-shot, few-shot and supervised learning abilities. Their zero-shot performance is comparable with ChatGPT across 7 out of 8 datasets, with a slight variance of within 3%, and yet falls short when compared to GPT-4. In addition, we investigated the catastrophic forgetting problem, and our results show that Me LLaMA models outperform other open-source medical LLMs in mitigating this issue. Me LLaMA is one of the largest open-source medical foundation LLMs that use both biomedical and clinical data. It exhibits superior performance across both general and medical tasks compared to other open-source medical LLMs, rendering it an attractive choice for medical AI applications. We release our models, datasets, and evaluation scripts at: //github.com/BIDS-Xu-Lab/Me-LLaMA.
Due to its conceptual simplicity and generality, compressive neural representation has emerged as a promising alternative to traditional compression methods for managing massive volumetric datasets. The current practice of neural compression utilizes a single large multilayer perceptron (MLP) to encode the global volume, incurring slow training and inference. This paper presents an efficient compressive neural representation (ECNR) solution for time-varying data compression, utilizing the Laplacian pyramid for adaptive signal fitting. Following a multiscale structure, we leverage multiple small MLPs at each scale for fitting local content or residual blocks. By assigning similar blocks to the same MLP via size uniformization, we enable balanced parallelization among MLPs to significantly speed up training and inference. Working in concert with the multiscale structure, we tailor a deep compression strategy to compact the resulting model. We show the effectiveness of ECNR with multiple datasets and compare it with state-of-the-art compression methods (mainly SZ3, TTHRESH, and neurcomp). The results position ECNR as a promising solution for volumetric data compression.
Large language models (LLMs) have achieved unprecedented performance in various applications, yet their evaluation remains a critical issue. Existing hallucination benchmarks are either static or lack adjustable complexity for thorough analysis. We contend that utilizing existing relational databases is a promising approach for constructing benchmarks due to their accurate knowledge description via functional dependencies. We propose ERBench to automatically convert any relational database into a benchmark based on the entity-relationship (ER) model. Our key idea is to construct questions using the database schema, records, and functional dependencies such that they can be automatically verified. In addition, we use foreign key constraints to join relations and construct multihop questions, which can be arbitrarily complex and used to debug the intermediate answers of LLMs. Finally, ERBench supports continuous evaluation, multimodal questions, and various prompt engineering techniques. In our experiments, we construct an LLM benchmark using databases of multiple domains and make an extensive comparison of contemporary LLMs. We observe that better LLMs like GPT-4 can handle a larger variety of question types, but are by no means perfect. Also, correct answers do not necessarily imply correct rationales, which is an important evaluation that ERBench does better than other benchmarks for various question types. Code is available at https: //github.com/DILAB-KAIST/ERBench.
The recent explosion in popularity of large language models (LLMs) has inspired learning engineers to incorporate them into adaptive educational tools that automatically score summary writing. Understanding and evaluating LLMs is vital before deploying them in critical learning environments, yet their unprecedented size and expanding number of parameters inhibits transparency and impedes trust when they underperform. Through a collaborative user-centered design process with several learning engineers building and deploying summary scoring LLMs, we characterized fundamental design challenges and goals around interpreting their models, including aggregating large text inputs, tracking score provenance, and scaling LLM interpretability methods. To address their concerns, we developed iScore, an interactive visual analytics tool for learning engineers to upload, score, and compare multiple summaries simultaneously. Tightly integrated views allow users to iteratively revise the language in summaries, track changes in the resulting LLM scores, and visualize model weights at multiple levels of abstraction. To validate our approach, we deployed iScore with three learning engineers over the course of a month. We present a case study where interacting with iScore led a learning engineer to improve their LLM's score accuracy by three percentage points. Finally, we conducted qualitative interviews with the learning engineers that revealed how iScore enabled them to understand, evaluate, and build trust in their LLMs during deployment.
We introduce AnyGPT, an any-to-any multimodal language model that utilizes discrete representations for the unified processing of various modalities, including speech, text, images, and music. AnyGPT can be trained stably without any alterations to the current large language model (LLM) architecture or training paradigms. Instead, it relies exclusively on data-level preprocessing, facilitating the seamless integration of new modalities into LLMs, akin to the incorporation of new languages. We build a multimodal text-centric dataset for multimodal alignment pre-training. Utilizing generative models, we synthesize the first large-scale any-to-any multimodal instruction dataset. It consists of 108k samples of multi-turn conversations that intricately interweave various modalities, thus equipping the model to handle arbitrary combinations of multimodal inputs and outputs. Experimental results demonstrate that AnyGPT is capable of facilitating any-to-any multimodal conversation while achieving performance comparable to specialized models across all modalities, proving that discrete representations can effectively and conveniently unify multiple modalities within a language model. Demos are shown in //junzhan2000.github.io/AnyGPT.github.io/
Deep learning has achieved remarkable progress in various applications, heightening the importance of safeguarding the intellectual property (IP) of well-trained models. It entails not only authorizing usage but also ensuring the deployment of models in authorized data domains, i.e., making models exclusive to certain target domains. Previous methods necessitate concurrent access to source training data and target unauthorized data when performing IP protection, making them risky and inefficient for decentralized private data. In this paper, we target a practical setting where only a well-trained source model is available and investigate how we can realize IP protection. To achieve this, we propose a novel MAsk Pruning (MAP) framework. MAP stems from an intuitive hypothesis, i.e., there are target-related parameters in a well-trained model, locating and pruning them is the key to IP protection. Technically, MAP freezes the source model and learns a target-specific binary mask to prevent unauthorized data usage while minimizing performance degradation on authorized data. Moreover, we introduce a new metric aimed at achieving a better balance between source and target performance degradation. To verify the effectiveness and versatility, we have evaluated MAP in a variety of scenarios, including vanilla source-available, practical source-free, and challenging data-free. Extensive experiments indicate that MAP yields new state-of-the-art performance.
Large language models (LLMs) have demonstrated impressive capabilities in natural language processing. However, their internal mechanisms are still unclear and this lack of transparency poses unwanted risks for downstream applications. Therefore, understanding and explaining these models is crucial for elucidating their behaviors, limitations, and social impacts. In this paper, we introduce a taxonomy of explainability techniques and provide a structured overview of methods for explaining Transformer-based language models. We categorize techniques based on the training paradigms of LLMs: traditional fine-tuning-based paradigm and prompting-based paradigm. For each paradigm, we summarize the goals and dominant approaches for generating local explanations of individual predictions and global explanations of overall model knowledge. We also discuss metrics for evaluating generated explanations, and discuss how explanations can be leveraged to debug models and improve performance. Lastly, we examine key challenges and emerging opportunities for explanation techniques in the era of LLMs in comparison to conventional machine learning models.
Recently many efforts have been devoted to applying graph neural networks (GNNs) to molecular property prediction which is a fundamental task for computational drug and material discovery. One of major obstacles to hinder the successful prediction of molecule property by GNNs is the scarcity of labeled data. Though graph contrastive learning (GCL) methods have achieved extraordinary performance with insufficient labeled data, most focused on designing data augmentation schemes for general graphs. However, the fundamental property of a molecule could be altered with the augmentation method (like random perturbation) on molecular graphs. Whereas, the critical geometric information of molecules remains rarely explored under the current GNN and GCL architectures. To this end, we propose a novel graph contrastive learning method utilizing the geometry of the molecule across 2D and 3D views, which is named GeomGCL. Specifically, we first devise a dual-view geometric message passing network (GeomMPNN) to adaptively leverage the rich information of both 2D and 3D graphs of a molecule. The incorporation of geometric properties at different levels can greatly facilitate the molecular representation learning. Then a novel geometric graph contrastive scheme is designed to make both geometric views collaboratively supervise each other to improve the generalization ability of GeomMPNN. We evaluate GeomGCL on various downstream property prediction tasks via a finetune process. Experimental results on seven real-life molecular datasets demonstrate the effectiveness of our proposed GeomGCL against state-of-the-art baselines.
Graph representation learning resurges as a trending research subject owing to the widespread use of deep learning for Euclidean data, which inspire various creative designs of neural networks in the non-Euclidean domain, particularly graphs. With the success of these graph neural networks (GNN) in the static setting, we approach further practical scenarios where the graph dynamically evolves. Existing approaches typically resort to node embeddings and use a recurrent neural network (RNN, broadly speaking) to regulate the embeddings and learn the temporal dynamics. These methods require the knowledge of a node in the full time span (including both training and testing) and are less applicable to the frequent change of the node set. In some extreme scenarios, the node sets at different time steps may completely differ. To resolve this challenge, we propose EvolveGCN, which adapts the graph convolutional network (GCN) model along the temporal dimension without resorting to node embeddings. The proposed approach captures the dynamism of the graph sequence through using an RNN to evolve the GCN parameters. Two architectures are considered for the parameter evolution. We evaluate the proposed approach on tasks including link prediction, edge classification, and node classification. The experimental results indicate a generally higher performance of EvolveGCN compared with related approaches. The code is available at \url{//github.com/IBM/EvolveGCN}.