We consider the problem of comparison-sorting an $n$-permutation $S$ that avoids some $k$-permutation $\pi$. Chalermsook, Goswami, Kozma, Mehlhorn, and Saranurak prove that when $S$ is sorted by inserting the elements into the GreedyFuture binary search tree, the running time is linear in the extremal function $\mathrm{Ex}(P_\pi\otimes \text{hat},n)$. This is the maximum number of 1s in an $n\times n$ 0-1 matrix avoiding $P_\pi \otimes \text{hat}$, where $P_\pi$ is the $k\times k$ permutation matrix of $\pi$, $\otimes$ the Kronecker product, and $\text{hat} = \left(\begin{array}{ccc}&\bullet&\\\bullet&&\bullet\end{array}\right)$. The same time bound can be achieved by sorting $S$ with Kozma and Saranurak's SmoothHeap. In this paper we give nearly tight upper and lower bounds on the density of $P_\pi\otimes\text{hat}$-free matrices in terms of the inverse-Ackermann function $\alpha(n)$. \[ \mathrm{Ex}(P_\pi\otimes \text{hat},n) = \left\{\begin{array}{ll} \Omega(n\cdot 2^{\alpha(n)}), & \mbox{for most $\pi$,}\\ O(n\cdot 2^{O(k^2)+(1+o(1))\alpha(n)}), & \mbox{for all $\pi$.} \end{array}\right. \] As a consequence, sorting $\pi$-free sequences can be performed in $O(n2^{(1+o(1))\alpha(n)})$ time. For many corollaries of the dynamic optimality conjecture, the best analysis uses forbidden 0-1 matrix theory. Our analysis may be useful in analyzing other classes of access sequences on binary search trees.
We study local filters for the Lipschitz property of real-valued functions $f: V \to [0,r]$, where the Lipschitz property is defined with respect to an arbitrary undirected graph $G=(V,E)$. We give nearly optimal local Lipschitz filters both with respect to $\ell_1$ distance and $\ell_0$ distance. Previous work only considered unbounded-range functions over $[n]^d$. Jha and Raskhodnikova (SICOMP `13) gave an algorithm for such functions with lookup complexity exponential in $d$, which Awasthi et al.\ (ACM Trans. Comput. Theory) showed was necessary in this setting. By considering the natural class of functions whose range is bounded in $[0,r]$, we circumvent this lower bound and achieve running time $(d^r\log n)^{O(\log r)}$ for the $\ell_1$-respecting filter and $d^{O(r)}\text{polylog }n$ for the $\ell_0$-respecting filter for functions over $[n]^d$. Furthermore, we show that our algorithms are nearly optimal in terms of the dependence on $r$ for the domain $\{0,1\}^d$, an important special case of the domain $[n]^d$. In addition, our lower bound resolves an open question of Awasthi et al., removing one of the conditions necessary for their lower bound for general range. We prove our lower bound via a reduction from distribution-free Lipschitz testing. Finally, we provide two applications of our local filters. First, they can be used in conjunction with the Laplace mechanism for differential privacy to provide filter mechanisms for privately releasing outputs of black box functions even in the presence of malicious clients. Second, we use them to obtain the first tolerant testers for the Lipschitz property.
Multilevel lattice codes, such as the associated to Constructions $C$, $\overline{D}$, D and D', have relevant applications in communications. In this paper, we investigate some properties of lattices obtained via Constructions D and D' from $q$-ary linear codes. Connections with Construction A, generator matrices, expressions and bounds for the lattice volume and minimum distances are derived. Extensions of previous results regarding construction and decoding of binary and $p$-ary linear codes ($p$ prime) are also presented.
We study several polygonal curve problems under the Fr\'{e}chet distance via algebraic geometric methods. Let $\mathbb{X}_m^d$ and $\mathbb{X}_k^d$ be the spaces of all polygonal curves of $m$ and $k$ vertices in $\mathbb{R}^d$, respectively. We assume that $k \leq m$. Let $\mathcal{R}^d_{k,m}$ be the set of ranges in $\mathbb{X}_m^d$ for all possible metric balls of polygonal curves in $\mathbb{X}_k^d$ under the Fr\'{e}chet distance. We prove a nearly optimal bound of $O(dk\log (km))$ on the VC dimension of the range space $(\mathbb{X}_m^d,\mathcal{R}_{k,m}^d)$, improving on the previous $O(d^2k^2\log(dkm))$ upper bound and approaching the current $\Omega(dk\log k)$ lower bound. Our upper bound also holds for the weak Fr\'{e}chet distance. We also obtain exact solutions that are hitherto unknown for curve simplification, range searching, nearest neighbor search, and distance oracle.
We prove that, given a polyhedron $\mathcal P$ in $\mathbb{R}^3$, every point in $\mathbb R^3$ that does not see any vertex of $\mathcal P$ must see eight or more edges of $\mathcal P$, and this bound is tight. More generally, this remains true if $\mathcal P$ is any finite arrangement of internally disjoint polygons in $\mathbb{R}^3$. We also prove that every point in $\mathbb{R}^3$ can see six or more edges of $\mathcal{P}$ (possibly only the endpoints of some these edges) and every point in the interior of $\mathcal{P}$ can see a positive portion of at least six edges of $\mathcal{P}$. These bounds are also tight.
The combination of Terahertz (THz) and massive multiple-input multiple-output (MIMO) is promising to meet the increasing data rate demand of future wireless communication systems thanks to the huge bandwidth and spatial degrees of freedom. However, unique channel features such as the near-field beam split effect make channel estimation particularly challenging in THz massive MIMO systems. On one hand, adopting the conventional angular domain transformation dictionary designed for low-frequency far-field channels will result in degraded channel sparsity and destroyed sparsity structure in the transformed domain. On the other hand, most existing compressive sensing-based channel estimation algorithms cannot achieve high performance and low complexity simultaneously. To alleviate these issues, in this paper, we first adopt frequency-dependent near-field dictionaries to maintain good channel sparsity and sparsity structure in the transformed domain under the near-field beam split effect. Then, a deep unfolding-based wideband THz massive MIMO channel estimation algorithm is proposed. In each iteration of the unitary approximate message passing-sparse Bayesian learning algorithm, the optimal update rule is learned by a deep neural network (DNN), whose structure is customized to effectively exploit the inherent channel patterns. Furthermore, a mixed training method based on novel designs of the DNN structure and the loss function is developed to effectively train data from different system configurations. Simulation results validate the superiority of the proposed algorithm in terms of performance, complexity, and robustness.
Let $\mathbb{F}_q$ be a finite field of characteristic $p$. In this paper we prove that the $c$-Boomerang Uniformity, $c \neq 0$, for all permutation monomials $x^d$, where $d > 1$ and $p \nmid d$, is bounded by $d^2$. Further, we utilize this bound to estimate the $c$-boomerang uniformity of a large class of Generalized Triangular Dynamical Systems, a polynomial-based approach to describe cryptographic permutations, including the well-known Substitution-Permutation Network.
Shannon proved that almost all Boolean functions require a circuit of size $\Theta(2^n/n)$. We prove a quantum analog of this classical result. Unlike in the classical case the number of quantum circuits of any fixed size that we allow is uncountably infinite. Our main tool is a classical result in real algebraic geometry bounding the number of realizable sign conditions of any finite set of real polynomials in many variables.
The (bitwise) complement $\overline{x}$ of a binary word $x$ is obtained by changing each $0$ in $x$ to $1$ and vice versa. An $\textit{antisquare}$ is a nonempty word of the form $x\, \overline{x}$. In this paper, we study infinite binary words that do not contain arbitrarily large antisquares. For example, we show that the repetition threshold for the language of infinite binary words containing exactly two distinct antisquares is $(5+\sqrt{5})/2$. We also study repetition thresholds for related classes, where "two" in the previous sentence is replaced by a larger number. We say a binary word is $\textit{good}$ if the only antisquares it contains are $01$ and $10$. We characterize the minimal antisquares, that is, those words that are antisquares but all proper factors are good. We determine the growth rate of the number of good words of length $n$ and determine the repetition threshold between polynomial and exponential growth for the number of good words.
We consider the Shortest Odd Path problem, where given an undirected graph $G$, a weight function on its edges, and two vertices $s$ and $t$ in $G$, the aim is to find an $(s,t)$-path with odd length and, among all such paths, of minimum weight. For the case when the weight function is conservative, i.e., when every cycle has non-negative total weight, the complexity of the Shortest Odd Path problem had been open for 20 years, and was recently shown to be NP-hard. We give a polynomial-time algorithm for the special case when the weight function is conservative and the set $E^-$ of negative-weight edges forms a single tree. Our algorithm exploits the strong connection between Shortest Odd Path and the problem of finding two internally vertex-disjoint paths between two terminals in an undirected edge-weighted graph. It also relies on solving an intermediary problem variant called Shortest Parity-Constrained Odd Path where for certain edges we have parity constraints on their position along the path. Also, we exhibit two FPT algorithms for solving Shortest Odd Path in graphs with conservative weight functions. The first FPT algorithm is parameterized by $|E^-|$, the number of negative edges, or more generally, by the maximum size of a matching in the subgraph of $G$ spanned by $E^-$. Our second FPT algorithm is parameterized by the treewidth of $G$.
Since the introduction of ChatGPT and GPT-4, these models have been tested across a large number of tasks. Their adeptness across domains is evident, but their aptitude in playing games and specifically their aptitude in the realm of poker has remained unexplored. Poker is a game that requires decision making under uncertainty and incomplete information. In this paper, we put ChatGPT and GPT-4 through the poker test and evaluate their poker skills. Our findings reveal that while both models display an advanced understanding of poker, encompassing concepts like the valuation of starting hands, playing positions and other intricacies of game theory optimal (GTO) poker, both ChatGPT and GPT-4 are NOT game theory optimal poker players. Through a series of experiments, we first discover the characteristics of optimal prompts and model parameters for playing poker with these models. Our observations then unveil the distinct playing personas of the two models. We first conclude that GPT-4 is a more advanced poker player than ChatGPT. This exploration then sheds light on the divergent poker tactics of the two models: ChatGPT's conservativeness juxtaposed against GPT-4's aggression. In poker vernacular, when tasked to play GTO poker, ChatGPT plays like a Nit, which means that it has a propensity to only engage with premium hands and folds a majority of hands. When subjected to the same directive, GPT-4 plays like a maniac, showcasing a loose and aggressive style of play. Both strategies, although relatively advanced, are not game theory optimal.