The lack of generalizability -- in which a model trained on one dataset cannot provide accurate results for a different dataset -- is a known problem in the field of document layout analysis. Thus, when a model is used to locate important page objects in scientific literature such as figures, tables, captions, and math formulas, the model often cannot be applied successfully to new domains. While several solutions have been proposed, including newer and updated deep learning models, larger hand-annotated datasets, and the generation of large synthetic datasets, so far there is no "magic bullet" for translating a model trained on a particular domain or historical time period to a new field. Here we present our ongoing work in translating our document layout analysis model from the historical astrophysical literature to the larger corpus of scientific documents within the HathiTrust U.S. Federal Documents collection. We use this example as an avenue to highlight some of the problems with generalizability in the document layout analysis community and discuss several challenges and possible solutions to address these issues. All code for this work is available on The Reading Time Machine GitHub repository (//github.com/ReadingTimeMachine/htrc_short_conf).
The automatic extraction of information from Cyber Threat Intelligence (CTI) reports is crucial in risk management. The increased frequency of the publications of these reports has led researchers to develop new systems for automatically recovering different types of entities and relations from textual data. Most state-of-the-art models leverage Natural Language Processing (NLP) techniques, which perform greatly in extracting a few types of entities at a time but cannot detect heterogeneous data or their relations. Furthermore, several paradigms, such as STIX, have become de facto standards in the CTI community and dictate a formal categorization of different entities and relations to enable organizations to share data consistently. This paper presents STIXnet, the first solution for the automated extraction of all STIX entities and relationships in CTI reports. Through the use of NLP techniques and an interactive Knowledge Base (KB) of entities, our approach obtains F1 scores comparable to state-of-the-art models for entity extraction (0.916) and relation extraction (0.724) while considering significantly more types of entities and relations. Moreover, STIXnet constitutes a modular and extensible framework that manages and coordinates different modules to merge their contributions uniquely and exhaustively. With our approach, researchers and organizations can extend their Information Extraction (IE) capabilities by integrating the efforts of several techniques without needing to develop new tools from scratch.
The methods of extracting image features are the key to many image processing tasks. At present, the most popular method is the deep neural network which can automatically extract robust features through end-to-end training instead of hand-crafted feature extraction. However, the deep neural network currently faces many challenges: 1) its effectiveness is heavily dependent on large datasets, so the computational complexity is very high; 2) it is usually regarded as a black box model with poor interpretability. To meet the above challenges, a more interpretable and scalable feature learning method, i.e., deep image feature learning with fuzzy rules (DIFL-FR), is proposed in the paper, which combines the rule-based fuzzy modeling technique and the deep stacked learning strategy. The method progressively learns image features through a layer-by-layer manner based on fuzzy rules, so the feature learning process can be better explained by the generated rules. More importantly, the learning process of the method is only based on forward propagation without back propagation and iterative learning, which results in the high learning efficiency. In addition, the method is under the settings of unsupervised learning and can be easily extended to scenes of supervised and semi-supervised learning. Extensive experiments are conducted on image datasets of different scales. The results obviously show the effectiveness of the proposed method.
Structured recursion schemes such as folds and unfolds have been widely used for structuring both functional programs and program semantics. In this context, it has been customary to implement denotational semantics as folds over an inductive data type to ensure termination and compositionality. Separately, operational models can be given by unfolds, and naturally not all operational models coincide with a given denotational semantics in a meaningful way. To ensure these semantics are coherent it is important to consider the property of full abstraction which relates the denotational and the operational model. In this paper, we show how to engineer a compositional semantics such that full abstraction comes for free. We do this by using distributive laws from which we generate both the operational and the denotational model. The distributive laws ensure the semantics are fully abstract at the type level, thus relieving the programmer from the burden of the proofs.
Document denoising and binarization are fundamental problems in the document processing space, but current datasets are often too small and lack sufficient complexity to effectively train and benchmark modern data-driven machine learning models. To fill this gap, we introduce ShabbyPages, a new document image dataset designed for training and benchmarking document denoisers and binarizers. ShabbyPages contains over 6,000 clean "born digital" images with synthetically-noised counterparts ("shabby pages") that were augmented using the Augraphy document augmentation tool to appear as if they have been printed and faxed, photocopied, or otherwise altered through physical processes. In this paper, we discuss the creation process of ShabbyPages and demonstrate the utility of ShabbyPages by training convolutional denoisers which remove real noise features with a high degree of human-perceptible fidelity, establishing baseline performance for a new ShabbyPages benchmark.
Efficient multi-robot task allocation (MRTA) is fundamental to various time-sensitive applications such as disaster response, warehouse operations, and construction. This paper tackles a particular class of these problems that we call MRTA-collective transport or MRTA-CT -- here tasks present varying workloads and deadlines, and robots are subject to flight range, communication range, and payload constraints. For large instances of these problems involving 100s-1000's of tasks and 10s-100s of robots, traditional non-learning solvers are often time-inefficient, and emerging learning-based policies do not scale well to larger-sized problems without costly retraining. To address this gap, we use a recently proposed encoder-decoder graph neural network involving Capsule networks and multi-head attention mechanism, and innovatively add topological descriptors (TD) as new features to improve transferability to unseen problems of similar and larger size. Persistent homology is used to derive the TD, and proximal policy optimization is used to train our TD-augmented graph neural network. The resulting policy model compares favorably to state-of-the-art non-learning baselines while being much faster. The benefit of using TD is readily evident when scaling to test problems of size larger than those used in training.
In large-scale systems there are fundamental challenges when centralised techniques are used for task allocation. The number of interactions is limited by resource constraints such as on computation, storage, and network communication. We can increase scalability by implementing the system as a distributed task-allocation system, sharing tasks across many agents. However, this also increases the resource cost of communications and synchronisation, and is difficult to scale. In this paper we present four algorithms to solve these problems. The combination of these algorithms enable each agent to improve their task allocation strategy through reinforcement learning, while changing how much they explore the system in response to how optimal they believe their current strategy is, given their past experience. We focus on distributed agent systems where the agents' behaviours are constrained by resource usage limits, limiting agents to local rather than system-wide knowledge. We evaluate these algorithms in a simulated environment where agents are given a task composed of multiple subtasks that must be allocated to other agents with differing capabilities, to then carry out those tasks. We also simulate real-life system effects such as networking instability. Our solution is shown to solve the task allocation problem to 6.7% of the theoretical optimal within the system configurations considered. It provides 5x better performance recovery over no-knowledge retention approaches when system connectivity is impacted, and is tested against systems up to 100 agents with less than a 9% impact on the algorithms' performance.
Visual information extraction (VIE) has attracted considerable attention recently owing to its various advanced applications such as document understanding, automatic marking and intelligent education. Most existing works decoupled this problem into several independent sub-tasks of text spotting (text detection and recognition) and information extraction, which completely ignored the high correlation among them during optimization. In this paper, we propose a robust visual information extraction system (VIES) towards real-world scenarios, which is a unified end-to-end trainable framework for simultaneous text detection, recognition and information extraction by taking a single document image as input and outputting the structured information. Specifically, the information extraction branch collects abundant visual and semantic representations from text spotting for multimodal feature fusion and conversely, provides higher-level semantic clues to contribute to the optimization of text spotting. Moreover, regarding the shortage of public benchmarks, we construct a fully-annotated dataset called EPHOIE (//github.com/HCIILAB/EPHOIE), which is the first Chinese benchmark for both text spotting and visual information extraction. EPHOIE consists of 1,494 images of examination paper head with complex layouts and background, including a total of 15,771 Chinese handwritten or printed text instances. Compared with the state-of-the-art methods, our VIES shows significant superior performance on the EPHOIE dataset and achieves a 9.01% F-score gain on the widely used SROIE dataset under the end-to-end scenario.
Over the past few years, we have seen fundamental breakthroughs in core problems in machine learning, largely driven by advances in deep neural networks. At the same time, the amount of data collected in a wide array of scientific domains is dramatically increasing in both size and complexity. Taken together, this suggests many exciting opportunities for deep learning applications in scientific settings. But a significant challenge to this is simply knowing where to start. The sheer breadth and diversity of different deep learning techniques makes it difficult to determine what scientific problems might be most amenable to these methods, or which specific combination of methods might offer the most promising first approach. In this survey, we focus on addressing this central issue, providing an overview of many widely used deep learning models, spanning visual, sequential and graph structured data, associated tasks and different training methods, along with techniques to use deep learning with less data and better interpret these complex models --- two central considerations for many scientific use cases. We also include overviews of the full design process, implementation tips, and links to a plethora of tutorials, research summaries and open-sourced deep learning pipelines and pretrained models, developed by the community. We hope that this survey will help accelerate the use of deep learning across different scientific domains.
Pre-training techniques have been verified successfully in a variety of NLP tasks in recent years. Despite the widespread of pre-training models for NLP applications, they almost focused on text-level manipulation, while neglecting the layout and style information that is vital for document image understanding. In this paper, we propose the LayoutLM to jointly model the interaction between text and layout information across scanned document images, which is beneficial for a great number of real-world document image understanding tasks such as information extraction from scanned documents. Furthermore, we also leverage the image features to incorporate the visual information of words into LayoutLM. To the best of our knowledge, this is the first time that text and layout are jointly learned in a single framework for document-level pre-training. It achieves new state-of-the-art results in several downstream tasks, including form understanding (from 70.72 to 79.27), receipt understanding (from 94.02 to 95.24) and document image classification (from 93.07 to 94.42). The code and pre-trained LayoutLM models are publicly available at //github.com/microsoft/unilm/tree/master/layoutlm.
Causal inference is a critical research topic across many domains, such as statistics, computer science, education, public policy and economics, for decades. Nowadays, estimating causal effect from observational data has become an appealing research direction owing to the large amount of available data and low budget requirement, compared with randomized controlled trials. Embraced with the rapidly developed machine learning area, various causal effect estimation methods for observational data have sprung up. In this survey, we provide a comprehensive review of causal inference methods under the potential outcome framework, one of the well known causal inference framework. The methods are divided into two categories depending on whether they require all three assumptions of the potential outcome framework or not. For each category, both the traditional statistical methods and the recent machine learning enhanced methods are discussed and compared. The plausible applications of these methods are also presented, including the applications in advertising, recommendation, medicine and so on. Moreover, the commonly used benchmark datasets as well as the open-source codes are also summarized, which facilitate researchers and practitioners to explore, evaluate and apply the causal inference methods.