亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

In policy learning for robotic manipulation, sample efficiency is of paramount importance. Thus, learning and extracting more compact representations from camera observations is a promising avenue. However, current methods often assume full observability of the scene and struggle with scale invariance. In many tasks and settings, this assumption does not hold as objects in the scene are often occluded or lie outside the field of view of the camera, rendering the camera observation ambiguous with regard to their location. To tackle this problem, we present BASK, a Bayesian approach to tracking scale-invariant keypoints over time. Our approach successfully resolves inherent ambiguities in images, enabling keypoint tracking on symmetrical objects and occluded and out-of-view objects. We employ our method to learn challenging multi-object robot manipulation tasks from wrist camera observations and demonstrate superior utility for policy learning compared to other representation learning techniques. Furthermore, we show outstanding robustness towards disturbances such as clutter, occlusions, and noisy depth measurements, as well as generalization to unseen objects both in simulation and real-world robotic experiments.

相關內容

Curriculum reinforcement learning (CRL) allows solving complex tasks by generating a tailored sequence of learning tasks, starting from easy ones and subsequently increasing their difficulty. Although the potential of curricula in RL has been clearly shown in various works, it is less clear how to generate them for a given learning environment, resulting in various methods aiming to automate this task. In this work, we focus on framing curricula as interpolations between task distributions, which has previously been shown to be a viable approach to CRL. Identifying key issues of existing methods, we frame the generation of a curriculum as a constrained optimal transport problem between task distributions. Benchmarks show that this way of curriculum generation can improve upon existing CRL methods, yielding high performance in various tasks with different characteristics.

Progress in deep learning highlights the tremendous potential of utilizing diverse robotic datasets for attaining effective generalization and makes it enticing to consider leveraging broad datasets for attaining robust generalization in robotic learning as well. However, in practice, we often want to learn a new skill in a new environment that is unlikely to be contained in the prior data. Therefore we ask: how can we leverage existing diverse offline datasets in combination with small amounts of task-specific data to solve new tasks, while still enjoying the generalization benefits of training on large amounts of data? In this paper, we demonstrate that end-to-end offline RL can be an effective approach for doing this, without the need for any representation learning or vision-based pre-training. We present pre-training for robots (PTR), a framework based on offline RL that attempts to effectively learn new tasks by combining pre-training on existing robotic datasets with rapid fine-tuning on a new task, with as few as 10 demonstrations. PTR utilizes an existing offline RL method, conservative Q-learning (CQL), but extends it to include several crucial design decisions that enable PTR to actually work and outperform a variety of prior methods. To our knowledge, PTR is the first RL method that succeeds at learning new tasks in a new domain on a real WidowX robot with as few as 10 task demonstrations, by effectively leveraging an existing dataset of diverse multi-task robot data collected in a variety of toy kitchens. We also demonstrate that PTR can enable effective autonomous fine-tuning and improvement in a handful of trials, without needing any demonstrations. An accompanying overview video can be found in the supplementary material and at thi URL: //sites.google.com/view/ptr-final/

Large language models (LLMs) have achieved dramatic proficiency over NLP tasks with normal length. Recently, multiple studies have committed to extending the context length and enhancing the long text modeling capabilities of LLMs. To comprehensively evaluate the long context ability of LLMs, we propose BAMBOO, a multi-task long context benchmark. BAMBOO has been designed with four principles: comprehensive capacity evaluation, avoidance of data contamination, accurate automatic evaluation, and different length levels. It consists of 10 datasets from 5 different long text understanding tasks, i.e. question answering, hallucination detection, text sorting, language modeling, and code completion, to cover core capacities and various domains of LLMs. We conduct experiments with five long context models on BAMBOO and further discuss four key research questions of long text. We also qualitatively analyze current long context models and point out future directions for enhancing long text modeling capacities. We release our data, prompts, and code at //github.com/RUCAIBox/BAMBOO.

While distributional reinforcement learning (DistRL) has been empirically effective, the question of when and why it is better than vanilla, non-distributional RL has remained unanswered. This paper explains the benefits of DistRL through the lens of small-loss bounds, which are instance-dependent bounds that scale with optimal achievable cost. Particularly, our bounds converge much faster than those from non-distributional approaches if the optimal cost is small. As warmup, we propose a distributional contextual bandit (DistCB) algorithm, which we show enjoys small-loss regret bounds and empirically outperforms the state-of-the-art on three real-world tasks. In online RL, we propose a DistRL algorithm that constructs confidence sets using maximum likelihood estimation. We prove that our algorithm enjoys novel small-loss PAC bounds in low-rank MDPs. As part of our analysis, we introduce the $\ell_1$ distributional eluder dimension which may be of independent interest. Then, in offline RL, we show that pessimistic DistRL enjoys small-loss PAC bounds that are novel to the offline setting and are more robust to bad single-policy coverage.

Semantic reasoning and dynamic planning capabilities are crucial for an autonomous agent to perform complex navigation tasks in unknown environments. It requires a large amount of common-sense knowledge, that humans possess, to succeed in these tasks. We present SayNav, a new approach that leverages human knowledge from Large Language Models (LLMs) for efficient generalization to complex navigation tasks in unknown large-scale environments. SayNav uses a novel grounding mechanism, that incrementally builds a 3D scene graph of the explored environment as inputs to LLMs, for generating feasible and contextually appropriate high-level plans for navigation. The LLM-generated plan is then executed by a pre-trained low-level planner, that treats each planned step as a short-distance point-goal navigation sub-task. SayNav dynamically generates step-by-step instructions during navigation and continuously refines future steps based on newly perceived information. We evaluate SayNav on a new multi-object navigation task, that requires the agent to utilize a massive amount of human knowledge to efficiently search multiple different objects in an unknown environment. SayNav outperforms an oracle based Point-nav baseline, achieving a success rate of 95.35% (vs 56.06% for the baseline), under the ideal settings on this task, highlighting its ability to generate dynamic plans for successfully locating objects in large-scale new environments. In addition, SayNav also enables efficient generalization of learning to navigate from simulation to real novel environments.

Linear combination is a potent data fusion method in information retrieval tasks, thanks to its ability to adjust weights for diverse scenarios. However, achieving optimal weight training has traditionally required manual relevance judgments on a large percentage of documents, a labor-intensive and expensive process. In this study, we investigate the feasibility of obtaining near-optimal weights using a mere 20\%-50\% of relevant documents. Through experiments on four TREC datasets, we find that weights trained with multiple linear regression using this reduced set closely rival those obtained with TREC's official "qrels." Our findings unlock the potential for more efficient and affordable data fusion, empowering researchers and practitioners to reap its full benefits with significantly less effort.

In pace with developments in the research field of artificial intelligence, knowledge graphs (KGs) have attracted a surge of interest from both academia and industry. As a representation of semantic relations between entities, KGs have proven to be particularly relevant for natural language processing (NLP), experiencing a rapid spread and wide adoption within recent years. Given the increasing amount of research work in this area, several KG-related approaches have been surveyed in the NLP research community. However, a comprehensive study that categorizes established topics and reviews the maturity of individual research streams remains absent to this day. Contributing to closing this gap, we systematically analyzed 507 papers from the literature on KGs in NLP. Our survey encompasses a multifaceted review of tasks, research types, and contributions. As a result, we present a structured overview of the research landscape, provide a taxonomy of tasks, summarize our findings, and highlight directions for future work.

In contrast to batch learning where all training data is available at once, continual learning represents a family of methods that accumulate knowledge and learn continuously with data available in sequential order. Similar to the human learning process with the ability of learning, fusing, and accumulating new knowledge coming at different time steps, continual learning is considered to have high practical significance. Hence, continual learning has been studied in various artificial intelligence tasks. In this paper, we present a comprehensive review of the recent progress of continual learning in computer vision. In particular, the works are grouped by their representative techniques, including regularization, knowledge distillation, memory, generative replay, parameter isolation, and a combination of the above techniques. For each category of these techniques, both its characteristics and applications in computer vision are presented. At the end of this overview, several subareas, where continuous knowledge accumulation is potentially helpful while continual learning has not been well studied, are discussed.

Influenced by the stunning success of deep learning in computer vision and language understanding, research in recommendation has shifted to inventing new recommender models based on neural networks. In recent years, we have witnessed significant progress in developing neural recommender models, which generalize and surpass traditional recommender models owing to the strong representation power of neural networks. In this survey paper, we conduct a systematic review on neural recommender models, aiming to summarize the field to facilitate future progress. Distinct from existing surveys that categorize existing methods based on the taxonomy of deep learning techniques, we instead summarize the field from the perspective of recommendation modeling, which could be more instructive to researchers and practitioners working on recommender systems. Specifically, we divide the work into three types based on the data they used for recommendation modeling: 1) collaborative filtering models, which leverage the key source of user-item interaction data; 2) content enriched models, which additionally utilize the side information associated with users and items, like user profile and item knowledge graph; and 3) context enriched models, which account for the contextual information associated with an interaction, such as time, location, and the past interactions. After reviewing representative works for each type, we finally discuss some promising directions in this field, including benchmarking recommender systems, graph reasoning based recommendation models, and explainable and fair recommendations for social good.

Since hardware resources are limited, the objective of training deep learning models is typically to maximize accuracy subject to the time and memory constraints of training and inference. We study the impact of model size in this setting, focusing on Transformer models for NLP tasks that are limited by compute: self-supervised pretraining and high-resource machine translation. We first show that even though smaller Transformer models execute faster per iteration, wider and deeper models converge in significantly fewer steps. Moreover, this acceleration in convergence typically outpaces the additional computational overhead of using larger models. Therefore, the most compute-efficient training strategy is to counterintuitively train extremely large models but stop after a small number of iterations. This leads to an apparent trade-off between the training efficiency of large Transformer models and the inference efficiency of small Transformer models. However, we show that large models are more robust to compression techniques such as quantization and pruning than small models. Consequently, one can get the best of both worlds: heavily compressed, large models achieve higher accuracy than lightly compressed, small models.

北京阿比特科技有限公司