亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Infants' ability to recognize and categorize objects develops gradually. The second year of life is marked by both the emergence of more semantic visual representations and a better understanding of word meaning. This suggests that language input may play an important role in shaping visual representations. However, even in suitable contexts for word learning like dyadic play sessions, caregivers utterances are sparse and ambiguous, often referring to objects that are different from the one to which the child attends. Here, we systematically investigate to what extent caregivers' utterances can nevertheless enhance visual representations. For this we propose a computational model of visual representation learning during dyadic play. We introduce a synthetic dataset of ego-centric images perceived by a toddler-agent that moves and rotates toy objects in different parts of its home environment while hearing caregivers' utterances, modeled as captions. We propose to model toddlers' learning as simultaneously aligning representations for 1) close-in-time images and 2) co-occurring images and utterances. We show that utterances with statistics matching those of real caregivers give rise to representations supporting improved category recognition. Our analysis reveals that a small decrease/increase in object-relevant naming frequencies can drastically impact the learned representations. This affects the attention on object names within an utterance, which is required for efficient visuo-linguistic alignment. Overall, our results support the hypothesis that caregivers' naming utterances can improve toddlers' visual representations.

相關內容

Digital circuits, despite having been studied for nearly a century and used at scale for about half that time, have until recently evaded a fully compositional theoretical understanding, in which arbitrary circuits may be freely composed together without consulting their internals. Recent work remedied this theoretical shortcoming by showing how digital circuits can be presented compositionally as morphisms in a freely generated symmetric traced category. However, this was done informally; in this paper we refine and expand the previous work in several ways, culminating in the presentation of three sound and complete semantics for digital circuits: denotational, operational and algebraic. For the denotational semantics, we establish a correspondence between stream functions with certain properties and circuits constructed syntactically. For the operational semantics, we present the reductions required to model how a circuit processes a value, including the addition of a new reduction for eliminating non-delay-guarded feedback; this leads to an adequate notion of observational equivalence for digital circuits. Finally, we define a new family of equations for translating circuits into bisimilar circuits of a 'normal form', leading to a complete algebraic semantics for sequential circuits

Narrative visualization effectively transforms data into engaging stories, making complex information accessible to a broad audience. Large models, essential for narrative visualization, inherently facilitate this process through their superior ability to handle natural language queries and answers, generate cohesive narratives, and enhance visual communication. Inspired by previous work in narrative visualization and recent advances in large models, we synthesized potential tasks and opportunities for large models at various stages of narrative visualization. In our study, we surveyed 79 papers to explore the role of large models in automating narrative visualization creation. We propose a comprehensive pipeline that leverages large models for crafting narrative visualization, categorizing the reviewed literature into four essential phases: Data, Narration, Visualization, and Presentation. Additionally, we identify nine specific tasks where large models are applied across these stages. This study maps out the landscape of challenges and opportunities in the LM4NV process, providing insightful directions for future research and valuable guidance for scholars in the field.

We present an avatar system designed to facilitate the embodiment of humanoid robots by human operators, validated through iCub3, a humanoid developed at the Istituto Italiano di Tecnologia (IIT). More precisely, the contribution of the paper is twofold: first, we present the humanoid iCub3 as a robotic avatar which integrates the latest significant improvements after about fifteen years of development of the iCub series; second, we present a versatile avatar system enabling humans to embody humanoid robots encompassing aspects such as locomotion, manipulation, voice, and face expressions with comprehensive sensory feedback including visual, auditory, haptic, weight, and touch modalities. We validate the system by implementing several avatar architecture instances, each tailored to specific requirements. First, we evaluated the optimized architecture for verbal, non-verbal, and physical interactions with a remote recipient. This testing involved the operator in Genoa and the avatar in the Biennale di Venezia, Venice - about 290 Km away - thus allowing the operator to visit remotely the Italian art exhibition. Second, we evaluated the optimised architecture for recipient physical collaboration and public engagement on-stage, live, at the We Make Future show, a prominent world digital innovation festival. In this instance, the operator was situated in Genoa while the avatar operates in Rimini - about 300 Km away - interacting with a recipient who entrusted the avatar a payload to carry on stage before an audience of approximately 2000 spectators. Third, we present the architecture implemented by the iCub Team for the ANA Avatar XPrize competition.

Despite the impressive performance across numerous tasks, large language models (LLMs) often fail in solving simple decision-making tasks due to the misalignment of the knowledge in LLMs with environments. On the contrary, reinforcement learning (RL) agents learn policies from scratch, which makes them always align with environments but difficult to incorporate prior knowledge for efficient explorations. To narrow the gap, we propose TWOSOME, a novel general online framework that deploys LLMs as decision-making agents to efficiently interact and align with embodied environments via RL without requiring any prepared datasets or prior knowledge of the environments. Firstly, we query the joint probabilities of each valid action with LLMs to form behavior policies. Then, to enhance the stability and robustness of the policies, we propose two normalization methods and summarize four prompt design principles. Finally, we design a novel parameter-efficient training architecture where the actor and critic share one frozen LLM equipped with low-rank adapters (LoRA) updated by PPO. We conduct extensive experiments to evaluate TWOSOME. i) TWOSOME exhibits significantly better sample efficiency and performance compared to the conventional RL method, PPO, and prompt tuning method, SayCan, in both classical decision-making environment, Overcooked, and simulated household environment, VirtualHome. ii) Benefiting from LLMs' open-vocabulary feature, TWOSOME shows superior generalization ability to unseen tasks. iii) Under our framework, there is no significant loss of the LLMs' original ability during online PPO finetuning.

This article presents the affordances that Generative Artificial Intelligence can have in disinformation context, one of the major threats to our digitalized society. We present a research framework to generate customized agent-based social networks for disinformation simulations that would enable understanding and evaluation of the phenomena whilst discussing open challenges.

Believable proxies of human behavior can empower interactive applications ranging from immersive environments to rehearsal spaces for interpersonal communication to prototyping tools. In this paper, we introduce generative agents--computational software agents that simulate believable human behavior. Generative agents wake up, cook breakfast, and head to work; artists paint, while authors write; they form opinions, notice each other, and initiate conversations; they remember and reflect on days past as they plan the next day. To enable generative agents, we describe an architecture that extends a large language model to store a complete record of the agent's experiences using natural language, synthesize those memories over time into higher-level reflections, and retrieve them dynamically to plan behavior. We instantiate generative agents to populate an interactive sandbox environment inspired by The Sims, where end users can interact with a small town of twenty five agents using natural language. In an evaluation, these generative agents produce believable individual and emergent social behaviors: for example, starting with only a single user-specified notion that one agent wants to throw a Valentine's Day party, the agents autonomously spread invitations to the party over the next two days, make new acquaintances, ask each other out on dates to the party, and coordinate to show up for the party together at the right time. We demonstrate through ablation that the components of our agent architecture--observation, planning, and reflection--each contribute critically to the believability of agent behavior. By fusing large language models with computational, interactive agents, this work introduces architectural and interaction patterns for enabling believable simulations of human behavior.

The advent of large language models marks a revolutionary breakthrough in artificial intelligence. With the unprecedented scale of training and model parameters, the capability of large language models has been dramatically improved, leading to human-like performances in understanding, language synthesizing, and common-sense reasoning, etc. Such a major leap-forward in general AI capacity will change the pattern of how personalization is conducted. For one thing, it will reform the way of interaction between humans and personalization systems. Instead of being a passive medium of information filtering, large language models present the foundation for active user engagement. On top of such a new foundation, user requests can be proactively explored, and user's required information can be delivered in a natural and explainable way. For another thing, it will also considerably expand the scope of personalization, making it grow from the sole function of collecting personalized information to the compound function of providing personalized services. By leveraging large language models as general-purpose interface, the personalization systems may compile user requests into plans, calls the functions of external tools to execute the plans, and integrate the tools' outputs to complete the end-to-end personalization tasks. Today, large language models are still being developed, whereas the application in personalization is largely unexplored. Therefore, we consider it to be the right time to review the challenges in personalization and the opportunities to address them with LLMs. In particular, we dedicate this perspective paper to the discussion of the following aspects: the development and challenges for the existing personalization system, the newly emerged capabilities of large language models, and the potential ways of making use of large language models for personalization.

In pace with developments in the research field of artificial intelligence, knowledge graphs (KGs) have attracted a surge of interest from both academia and industry. As a representation of semantic relations between entities, KGs have proven to be particularly relevant for natural language processing (NLP), experiencing a rapid spread and wide adoption within recent years. Given the increasing amount of research work in this area, several KG-related approaches have been surveyed in the NLP research community. However, a comprehensive study that categorizes established topics and reviews the maturity of individual research streams remains absent to this day. Contributing to closing this gap, we systematically analyzed 507 papers from the literature on KGs in NLP. Our survey encompasses a multifaceted review of tasks, research types, and contributions. As a result, we present a structured overview of the research landscape, provide a taxonomy of tasks, summarize our findings, and highlight directions for future work.

We consider the problem of explaining the predictions of graph neural networks (GNNs), which otherwise are considered as black boxes. Existing methods invariably focus on explaining the importance of graph nodes or edges but ignore the substructures of graphs, which are more intuitive and human-intelligible. In this work, we propose a novel method, known as SubgraphX, to explain GNNs by identifying important subgraphs. Given a trained GNN model and an input graph, our SubgraphX explains its predictions by efficiently exploring different subgraphs with Monte Carlo tree search. To make the tree search more effective, we propose to use Shapley values as a measure of subgraph importance, which can also capture the interactions among different subgraphs. To expedite computations, we propose efficient approximation schemes to compute Shapley values for graph data. Our work represents the first attempt to explain GNNs via identifying subgraphs explicitly and directly. Experimental results show that our SubgraphX achieves significantly improved explanations, while keeping computations at a reasonable level.

For deploying a deep learning model into production, it needs to be both accurate and compact to meet the latency and memory constraints. This usually results in a network that is deep (to ensure performance) and yet thin (to improve computational efficiency). In this paper, we propose an efficient method to train a deep thin network with a theoretic guarantee. Our method is motivated by model compression. It consists of three stages. In the first stage, we sufficiently widen the deep thin network and train it until convergence. In the second stage, we use this well-trained deep wide network to warm up (or initialize) the original deep thin network. This is achieved by letting the thin network imitate the immediate outputs of the wide network from layer to layer. In the last stage, we further fine tune this well initialized deep thin network. The theoretical guarantee is established by using mean field analysis, which shows the advantage of layerwise imitation over traditional training deep thin networks from scratch by backpropagation. We also conduct large-scale empirical experiments to validate our approach. By training with our method, ResNet50 can outperform ResNet101, and BERT_BASE can be comparable with BERT_LARGE, where both the latter models are trained via the standard training procedures as in the literature.

北京阿比特科技有限公司