亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Contrastive Language-Image Pretraining (CLIP) has achieved remarkable success, leading to rapid advancements in multimodal studies. However, CLIP faces a notable challenge in terms of inefficient data utilization. It relies on a single contrastive supervision for each image-text pair during representation learning, disregarding a substantial amount of valuable information that could offer richer supervision. Additionally, the retention of non-informative tokens leads to increased computational demands and time costs, particularly in CLIP's ViT image encoder. To address these issues, we propose Multi-Perspective Language-Image Pretraining (MLIP). In MLIP, we leverage the frequency transform's sensitivity to both high and low-frequency variations, which complements the spatial domain's sensitivity limited to low-frequency variations only. By incorporating frequency transforms and token-level alignment, we expand CILP's single supervision into multi-domain and multi-level supervision, enabling a more thorough exploration of informative image features. Additionally, we introduce a token merging method guided by comprehensive semantics from the frequency and spatial domains. This allows us to merge tokens to multi-granularity tokens with a controllable compression rate to accelerate CLIP. Extensive experiments validate the effectiveness of our design.

相關內容

In the rapidly evolving field of 3D reconstruction, 3D Gaussian Splatting (3DGS) and 2D Gaussian Splatting (2DGS) represent significant advancements. Although 2DGS compresses 3D Gaussian primitives into 2D Gaussian surfels to effectively enhance mesh extraction quality, this compression can potentially lead to a decrease in rendering quality. Additionally, unreliable densification processes and the calculation of depth through the accumulation of opacity can compromise the detail of mesh extraction. To address this issue, we introduce MVG-Splatting, a solution guided by Multi-View considerations. Specifically, we integrate an optimized method for calculating normals, which, combined with image gradients, helps rectify inconsistencies in the original depth computations. Additionally, utilizing projection strategies akin to those in Multi-View Stereo (MVS), we propose an adaptive quantile-based method that dynamically determines the level of additional densification guided by depth maps, from coarse to fine detail. Experimental evidence demonstrates that our method not only resolves the issues of rendering quality degradation caused by depth discrepancies but also facilitates direct mesh extraction from dense Gaussian point clouds using the Marching Cubes algorithm. This approach significantly enhances the overall fidelity and accuracy of the 3D reconstruction process, ensuring that both the geometric details and visual quality.

Unsupervised Domain Adaptation (DA) consists of adapting a model trained on a labeled source domain to perform well on an unlabeled target domain with some data distribution shift. While many methods have been proposed in the literature, fair and realistic evaluation remains an open question, particularly due to methodological difficulties in selecting hyperparameters in the unsupervised setting. With SKADA-Bench, we propose a framework to evaluate DA methods and present a fair evaluation of existing shallow algorithms, including reweighting, mapping, and subspace alignment. Realistic hyperparameter selection is performed with nested cross-validation and various unsupervised model selection scores, on both simulated datasets with controlled shifts and real-world datasets across diverse modalities, such as images, text, biomedical, and tabular data with specific feature extraction. Our benchmark highlights the importance of realistic validation and provides practical guidance for real-life applications, with key insights into the choice and impact of model selection approaches. SKADA-Bench is open-source, reproducible, and can be easily extended with novel DA methods, datasets, and model selection criteria without requiring re-evaluating competitors. SKADA-Bench is available on GitHub at //github.com/scikit-adaptation/skada-bench.

Large Language Models (LLMs) have achieved remarkable performance in multiple Natural Language Processing (NLP) tasks. Under the premise that protein sequences constitute the protein language, Protein Language Models(PLMs) have advanced the field of protein engineering. However, as of now, unlike LLMs in NLP, PLMs cannot handle the protein understanding task and the protein generation task simultaneously in the Protein Language Processing (PLP) field. This prompts us to delineate the inherent limitations in current PLMs: (i) the lack of natural language capabilities, (ii) insufficient instruction understanding, and (iii) high training resource demands. To address these challenges, we introduce a training framework to transform any general LLM into a PLM capable of handling multiple PLP tasks. To improve training efficiency, we propose Protein Vocabulary Pruning (PVP) for general LLMs. We construct a multi-task instruction dataset containing 13 million samples with superfamily information, facilitating better modeling of protein sequence-function landscapes. Through these methods, we develop the ProLLaMA model, the first known PLM to handle multiple PLP tasks simultaneously. Experiments show that ProLLaMA achieves state-of-the-art results in the unconditional protein sequence generation task. In the controllable protein sequence generation task, ProLLaMA can design novel proteins with desired functionalities. As for the protein understanding task, ProLLaMA achieves a 62\% exact match rate in superfamily prediction. Codes, model weights, and datasets are available at \url{//github.com/PKU-YuanGroup/ProLLaMA} and \url{//huggingface.co/GreatCaptainNemo}.

Minigolf, a game with countless court layouts, and complex ball motion, constitutes a compelling real-world testbed for the study of embodied intelligence. As it not only challenges spatial and kinodynamic reasoning but also requires reflective and corrective capacities to address erroneously designed courses. We introduce RoboGolf, a VLM-based framework that perceives dual-camera visual inputs with nested VLM-empowered closed-loop control and reflective equilibrium loop. Extensive experiments demonstrate the effectiveness of RoboGolf on challenging minigolf courts including those that are impossible to finish.

Recently, detection transformers (DETRs) have gradually taken a dominant position in 2D detection thanks to their elegant framework. However, DETR-based detectors for 3D point clouds are still difficult to achieve satisfactory performance. We argue that the main challenges are twofold: 1) How to obtain the appropriate object queries is challenging due to the high sparsity and uneven distribution of point clouds; 2) How to implement an effective query interaction by exploiting the rich geometric structure of point clouds is not fully explored. To this end, we propose a simple and effective 3D DETR method (SEED) for detecting 3D objects from point clouds, which involves a dual query selection (DQS) module and a deformable grid attention (DGA) module. More concretely, to obtain appropriate queries, DQS first ensures a high recall to retain a large number of queries by the predicted confidence scores and then further picks out high-quality queries according to the estimated quality scores. DGA uniformly divides each reference box into grids as the reference points and then utilizes the predicted offsets to achieve a flexible receptive field, allowing the network to focus on relevant regions and capture more informative features. Extensive ablation studies on DQS and DGA demonstrate its effectiveness. Furthermore, our SEED achieves state-of-the-art detection performance on both the large-scale Waymo and nuScenes datasets, illustrating the superiority of our proposed method. The code is available at //github.com/happinesslz/SEED

Recently learned image compression (LIC) has achieved great progress and even outperformed the traditional approach using DCT or discrete wavelet transform (DWT). However, LIC mainly reduces spatial redundancy in the autoencoder networks and entropy coding, but has not fully removed the frequency-domain correlation explicitly as in DCT or DWT. To leverage the best of both worlds, we propose a surprisingly simple but efficient framework, which introduces the DWT to both the convolution layers and entropy coding of CNN-based LIC. First, in both the core and hyperprior autoencoder networks, we propose a Wavelet-domain Convolution (WeConv) module, which performs convolution after DWT, and then converts the data back to spatial domain via inverse DWT. This module is used at selected layers in a CNN network to reduce the frequency-domain correlation explicitly and make the signal sparser in DWT domain. We also propose a wavelet-domain Channel-wise Auto-Regressive entropy Model (WeChARM), where the output latent representations from the encoder network are first transformed by the DWT, before applying quantization and entropy coding, as in the traditional paradigm. Moreover, the entropy coding is split into two steps. We first code all low-frequency DWT coefficients, and then use them as prior to code high-frequency coefficients. The channel-wise entropy coding is further used in each step. By combining WeConv and WeChARM, the proposed WeConvene scheme achieves superior R-D performance compared to other state-of-the-art LIC methods as well as the latest H.266/VVC. For the Kodak dataset and the baseline network with -0.4% BD-Rate saving over H.266/VVC, introducing WeConv with the simplest Haar transform improves the saving to -4.7%. This is quite impressive given the simplicity of the Haar transform. Enabling Haar-based WeChARM entropy coding further boosts the saving to -8.2%.

The field of Earth Observations (EO) offers a wealth of data from diverse sensors, presenting a great opportunity for advancing self-supervised multimodal learning. However, current multimodal EO datasets and models focus on a single data type, either mono-date images or time series, which limits their expressivity. We introduce OmniSat, a novel architecture that exploits the spatial alignment between multiple EO modalities to learn expressive multimodal representations without labels. To demonstrate the advantages of combining modalities of different natures, we augment two existing datasets with new modalities. As demonstrated on three downstream tasks: forestry, land cover classification, and crop mapping. OmniSat can learn rich representations in an unsupervised manner, leading to improved performance in the semi- and fully-supervised settings, even when only one modality is available for inference. The code and dataset are available at //github.com/gastruc/OmniSat.

Utilizing Vision-Language Models (VLMs) for robotic manipulation represents a novel paradigm, aiming to enhance the model's ability to generalize to new objects and instructions. However, due to variations in camera specifications and mounting positions, existing methods exhibit significant performance disparities across different robotic platforms. To address this challenge, we propose RoboUniView in this paper, an innovative approach that decouples visual feature extraction from action learning. We first learn a unified view representation from multi-perspective views by pre-training on readily accessible data, and then derive actions from this unified view representation to control robotic manipulation. This unified view representation more accurately mirrors the physical world and is not constrained by the robotic platform's camera parameters. Thanks to this methodology, we achieve state-of-the-art performance on the demanding CALVIN benchmark, enhancing the success rate in the $D \to D$ setting from 93.0% to 96.2%, and in the $ABC \to D$ setting from 92.2% to 94.2%. Moreover, our model exhibits outstanding adaptability and flexibility: it maintains high performance under unseen camera parameters, can utilize multiple datasets with varying camera parameters, and is capable of joint cross-task learning across datasets. Code is provided for re-implementation. //github.com/liufanfanlff/RoboUniview

Recent advancements in LLMs have showcased their remarkable role-playing capabilities, able to accurately simulate the dialogue styles and cognitive processes of various roles based on different instructions and contexts. Studies indicate that assigning LLMs the roles of experts, a strategy known as role-play prompting, can enhance their performance in the corresponding domains. However, the prompt needs to be manually designed for the given problem, requiring certain expertise and iterative modifications. To this end, we propose self-prompt tuning, making LLMs themselves generate role-play prompts through fine-tuning. Leveraging the LIMA dataset as our foundational corpus, we employ GPT-4 to annotate role-play prompts for each data points, resulting in the creation of the LIMA-Role dataset. We then fine-tune LLMs like Llama-2-7B and Mistral-7B on LIMA-Role. Consequently, the self-prompt tuned LLMs can automatically generate expert role prompts for any given question. We extensively evaluate self-prompt tuned LLMs on widely used NLP benchmarks and open-ended question test. Our empirical results illustrate that self-prompt tuned LLMs outperform standard instruction tuned baselines across most datasets. This highlights the great potential of utilizing fine-tuning to enable LLMs to self-prompt, thereby automating complex prompting strategies. We release the dataset, models, and code at this \href{//anonymous.4open.science/r/Self-Prompt-Tuning-739E/}{url}.

Images can convey rich semantics and induce various emotions in viewers. Recently, with the rapid advancement of emotional intelligence and the explosive growth of visual data, extensive research efforts have been dedicated to affective image content analysis (AICA). In this survey, we will comprehensively review the development of AICA in the recent two decades, especially focusing on the state-of-the-art methods with respect to three main challenges -- the affective gap, perception subjectivity, and label noise and absence. We begin with an introduction to the key emotion representation models that have been widely employed in AICA and description of available datasets for performing evaluation with quantitative comparison of label noise and dataset bias. We then summarize and compare the representative approaches on (1) emotion feature extraction, including both handcrafted and deep features, (2) learning methods on dominant emotion recognition, personalized emotion prediction, emotion distribution learning, and learning from noisy data or few labels, and (3) AICA based applications. Finally, we discuss some challenges and promising research directions in the future, such as image content and context understanding, group emotion clustering, and viewer-image interaction.

北京阿比特科技有限公司