亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Sparse methods are the standard approach to obtain interpretable models with high prediction accuracy. Alternatively, algorithmic ensemble methods can achieve higher prediction accuracy at the cost of loss of interpretability. However, the use of blackbox methods has been heavily criticized for high-stakes decisions and it has been argued that there does not have to be a trade-off between accuracy and interpretability. To combine high accuracy with interpretability, we generalize best subset selection to best split selection. Best split selection constructs a small number of sparse models learned jointly from the data which are then combined in an ensemble. Best split selection determines the models by splitting the available predictor variables among the different models when fitting the data. The proposed methodology results in an ensemble of sparse and diverse models that each provide a possible explanation for the relationship between the predictors and the response. The high computational cost of best split selection motivates the need for computational tractable approximations. We evaluate a method developed by Christidis et al. (2020) which can be seen as a multi-convex relaxation of best split selection.

相關內容

機器學習系統設計系統評估標準

Super-Resolution is the technique to improve the quality of a low-resolution photo by boosting its plausible resolution. The computer vision community has extensively explored the area of Super-Resolution. However, previous Super-Resolution methods require vast amounts of data for training which becomes problematic in domains where very few low-resolution, high-resolution pairs might be available. One such area is statistical downscaling, where super-resolution is increasingly being used to obtain high-resolution climate information from low-resolution data. Acquiring high-resolution climate data is extremely expensive and challenging. To reduce the cost of generating high-resolution climate information, Super-Resolution algorithms should be able to train with a limited number of low-resolution, high-resolution pairs. This paper tries to solve the aforementioned problem by introducing a semi-supervised way to perform super-resolution that can generate sharp, high-resolution images with as few as 500 paired examples. The proposed semi-supervised technique can be used as a plug-and-play module with any supervised GAN-based Super-Resolution method to enhance its performance. We quantitatively and qualitatively analyze the performance of the proposed model and compare it with completely supervised methods as well as other unsupervised techniques. Comprehensive evaluations show the superiority of our method over other methods on different metrics. We also offer the applicability of our approach in statistical downscaling to obtain high-resolution climate images.

We investigate the feature compression of high-dimensional ridge regression using the optimal subsampling technique. Specifically, based on the basic framework of random sampling algorithm on feature for ridge regression and the A-optimal design criterion, we first obtain a set of optimal subsampling probabilities. Considering that the obtained probabilities are uneconomical, we then propose the nearly optimal ones. With these probabilities, a two step iterative algorithm is established which has lower computational cost and higher accuracy. We provide theoretical analysis and numerical experiments to support the proposed methods. Numerical results demonstrate the decent performance of our methods.

Cross-slide image analysis provides additional information by analysing the expression of different biomarkers as compared to a single slide analysis. These biomarker stained slides are analysed side by side, revealing unknown relations between them. During the slide preparation, a tissue section may be placed at an arbitrary orientation as compared to other sections of the same tissue block. The problem is compounded by the fact that tissue contents are likely to change from one section to the next and there may be unique artefacts on some of the slides. This makes registration of each section to a reference section of the same tissue block an important pre-requisite task before any cross-slide analysis. We propose a deep feature based registration (DFBR) method which utilises data-driven features to estimate the rigid transformation. We adopted a multi-stage strategy for improving the quality of registration. We also developed a visualisation tool to view registered pairs of WSIs at different magnifications. With the help of this tool, one can apply a transformation on the fly without the need to generate transformed source WSI in a pyramidal form. We compared the performance of data-driven features with that of hand-crafted features on the COMET dataset. Our approach can align the images with low registration errors. Generally, the success of non-rigid registration is dependent on the quality of rigid registration. To evaluate the efficacy of the DFBR method, the first two steps of the ANHIR winner's framework are replaced with our DFBR to register challenge provided image pairs. The modified framework produces comparable results to that of challenge winning team.

The four-parameter generalized beta distribution of the second kind (GBII) has been proposed for modelling insurance losses with heavy-tailed features. The aim of this paper is to present a parametric composite GBII regression modelling by splicing two GBII distributions using mode matching method. It is designed for simultaneous modeling of small and large claims and capturing the policyholder heterogeneity by introducing the covariates into the location parameter. In such cases, the threshold that splits two GBII distributions varies across individuals policyholders based on their risk features. The proposed regression modelling also contains a wide range of insurance loss distributions as the head and the tail respectively and provides the close-formed expressions for parameter estimation and model prediction. A simulation study is conducted to show the accuracy of the proposed estimation method and the flexibility of the regressions. Some illustrations of the applicability of the new class of distributions and regressions are provided with a Danish fire losses data set and a Chinese medical insurance claims data set, comparing with the results of competing models from the literature.

Active learning is a promising alternative to alleviate the issue of high annotation cost in the computer vision tasks by consciously selecting more informative samples to label. Active learning for object detection is more challenging and existing efforts on it are relatively rare. In this paper, we propose a novel hybrid approach to address this problem, where the instance-level uncertainty and diversity are jointly considered in a bottom-up manner. To balance the computational complexity, the proposed approach is designed as a two-stage procedure. At the first stage, an Entropy-based Non-Maximum Suppression (ENMS) is presented to estimate the uncertainty of every image, which performs NMS according to the entropy in the feature space to remove predictions with redundant information gains. At the second stage, a diverse prototype (DivProto) strategy is explored to ensure the diversity across images by progressively converting it into the intra-class and inter-class diversities of the entropy-based class-specific prototypes. Extensive experiments are conducted on MS COCO and Pascal VOC, and the proposed approach achieves state of the art results and significantly outperforms the other counterparts, highlighting its superiority.

Recognizing the type of connected devices to a network helps to perform security policies. In smart grids, identifying massive number of grid metering terminals based on network traffic analysis is almost blank and existing research has not proposed a targeted end-to-end model to solve the flow classification problem. Therefore, we proposed a hierarchical terminal recognition approach that applies the details of grid data. We have formed a two-level model structure by segmenting the grid data, which uses the statistical characteristics of network traffic and the specific behavior characteristics of grid metering terminals. Moreover, through the selection and reconstruction of features, we combine three algorithms to achieve accurate identification of terminal types that transmit network traffic. We conduct extensive experiments on a real dataset containing three types of grid metering terminals, and the results show that our research has improved performance compared to common recognition models. The combination of an autoencoder, K-Means and GradientBoost algorithm achieved the best recognition rate with F1 value of 98.3%.

In variable selection, a selection rule that prescribes the permissible sets of selected variables (called a "selection dictionary") is desirable due to the inherent structural constraints among the candidate variables. The methods that can incorporate such restrictions can improve model interpretability and prediction accuracy. Penalized regression can integrate selection rules by assigning the coefficients to different groups and then applying penalties to the groups. However, no general framework has been proposed to formalize selection rules and their applications. In this work, we establish a framework for structured variable selection that can incorporate universal structural constraints. We develop a mathematical language for constructing arbitrary selection rules, where the selection dictionary is formally defined. We show that all selection rules can be represented as a combination of operations on constructs, which can be used to identify the related selection dictionary. One may then apply some criteria to select the best model. We show that the theoretical framework can help to identify the grouping structure in existing penalized regression methods. In addition, we formulate structured variable selection into mixed-integer optimization problems which can be solved by existing software. Finally, we discuss the significance of the framework in the context of statistics.

This paper proposes an active learning algorithm for solving regression and classification problems based on inverse-distance weighting functions for selecting the feature vectors to query. The algorithm has the following features: (i) supports both pool-based and population-based sampling; (ii) is independent of the type of predictor used; (iii) can handle known and unknown constraints on the queryable feature vectors; and (iv) can run either sequentially, or in batch mode, depending on how often the predictor is retrained. The method's potential is shown in numerical tests on illustrative synthetic problems and real-world regression and classification datasets from the UCI repository. A Python implementation of the algorithm that we call IDEAL (Inverse-Distance based Exploration for Active Learning), is available at \url{//cse.lab.imtlucca.it/~bemporad/ideal}.

Residual networks (ResNets) have displayed impressive results in pattern recognition and, recently, have garnered considerable theoretical interest due to a perceived link with neural ordinary differential equations (neural ODEs). This link relies on the convergence of network weights to a smooth function as the number of layers increases. We investigate the properties of weights trained by stochastic gradient descent and their scaling with network depth through detailed numerical experiments. We observe the existence of scaling regimes markedly different from those assumed in neural ODE literature. Depending on certain features of the network architecture, such as the smoothness of the activation function, one may obtain an alternative ODE limit, a stochastic differential equation or neither of these. These findings cast doubts on the validity of the neural ODE model as an adequate asymptotic description of deep ResNets and point to an alternative class of differential equations as a better description of the deep network limit.

Deep convolutional neural networks (CNNs) have recently achieved great success in many visual recognition tasks. However, existing deep neural network models are computationally expensive and memory intensive, hindering their deployment in devices with low memory resources or in applications with strict latency requirements. Therefore, a natural thought is to perform model compression and acceleration in deep networks without significantly decreasing the model performance. During the past few years, tremendous progress has been made in this area. In this paper, we survey the recent advanced techniques for compacting and accelerating CNNs model developed. These techniques are roughly categorized into four schemes: parameter pruning and sharing, low-rank factorization, transferred/compact convolutional filters, and knowledge distillation. Methods of parameter pruning and sharing will be described at the beginning, after that the other techniques will be introduced. For each scheme, we provide insightful analysis regarding the performance, related applications, advantages, and drawbacks etc. Then we will go through a few very recent additional successful methods, for example, dynamic capacity networks and stochastic depths networks. After that, we survey the evaluation matrix, the main datasets used for evaluating the model performance and recent benchmarking efforts. Finally, we conclude this paper, discuss remaining challenges and possible directions on this topic.

北京阿比特科技有限公司