亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Generating texts which express complex ideas spanning multiple sentences requires a structured representation of their content (document plan), but these representations are prohibitively expensive to manually produce. In this work, we address the problem of generating coherent multi-sentence texts from the output of an information extraction system, and in particular a knowledge graph. Graphical knowledge representations are ubiquitous in computing, but pose a significant challenge for text generation techniques due to their non-hierarchical nature, collapsing of long-distance dependencies, and structural variety. We introduce a novel graph transforming encoder which can leverage the relational structure of such knowledge graphs without imposing linearization or hierarchical constraints. Incorporated into an encoder-decoder setup, we provide an end-to-end trainable system for graph-to-text generation that we apply to the domain of scientific text. Automatic and human evaluations show that our technique produces more informative texts which exhibit better document structure than competitive encoder-decoder methods.

相關內容

Pre-trained language representation models, such as BERT, capture a general language representation from large-scale corpora, but lack domain-specific knowledge. When reading a domain text, experts make inferences with relevant knowledge. For machines to achieve this capability, we propose a knowledge-enabled language representation model (K-BERT) with knowledge graphs (KGs), in which triples are injected into the sentences as domain knowledge. However, too much knowledge incorporation may divert the sentence from its correct meaning, which is called knowledge noise (KN) issue. To overcome KN, K-BERT introduces soft-position and visible matrix to limit the impact of knowledge. K-BERT can easily inject domain knowledge into the models by equipped with a KG without pre-training by-self because it is capable of loading model parameters from the pre-trained BERT. Our investigation reveals promising results in twelve NLP tasks. Especially in domain-specific tasks (including finance, law, and medicine), K-BERT significantly outperforms BERT, which demonstrates that K-BERT is an excellent choice for solving the knowledge-driven problems that require experts.

Knowledge graphs are important resources for many artificial intelligence tasks but often suffer from incompleteness. In this work, we propose to use pre-trained language models for knowledge graph completion. We treat triples in knowledge graphs as textual sequences and propose a novel framework named Knowledge Graph Bidirectional Encoder Representations from Transformer (KG-BERT) to model these triples. Our method takes entity and relation descriptions of a triple as input and computes scoring function of the triple with the KG-BERT language model. Experimental results on multiple benchmark knowledge graphs show that our method can achieve state-of-the-art performance in triple classification, link prediction and relation prediction tasks.

Recent progress in pretraining language models on large textual corpora led to a surge of improvements for downstream NLP tasks. Whilst learning linguistic knowledge, these models may also be storing relational knowledge present in the training data, and may be able to answer queries structured as "fill-in-the-blank" cloze statements. Language models have many advantages over structured knowledge bases: they require no schema engineering, allow practitioners to query about an open class of relations, are easy to extend to more data, and require no human supervision to train. We present an in-depth analysis of the relational knowledge already present (without fine-tuning) in a wide range of state-of-the-art pretrained language models. We find that (i) without fine-tuning, BERT contains relational knowledge competitive with traditional NLP methods that have some access to oracle knowledge, (ii) BERT also does remarkably well on open-domain question answering against a supervised baseline, and (iii) certain types of factual knowledge are learned much more readily than others by standard language model pretraining approaches. The surprisingly strong ability of these models to recall factual knowledge without any fine-tuning demonstrates their potential as unsupervised open-domain QA systems. The code to reproduce our analysis is available at //github.com/facebookresearch/LAMA.

Two types of knowledge, triples from knowledge graphs and texts from documents, have been studied for knowledge aware open-domain conversation generation, in which graph paths can narrow down vertex candidates for knowledge selection decision, and texts can provide rich information for response generation. Fusion of a knowledge graph and texts might yield mutually reinforcing advantages, but there is less study on that. To address this challenge, we propose a knowledge aware chatting machine with three components, an augmented knowledge graph with both triples and texts, knowledge selector, and knowledge aware response generator. For knowledge selection on the graph, we formulate it as a problem of multi-hop graph reasoning to effectively capture conversation flow, which is more explainable and flexible in comparison with previous work. To fully leverage long text information that differentiates our graph from others, we improve a state of the art reasoning algorithm with machine reading comprehension technology. We demonstrate the effectiveness of our system on two datasets in comparison with state-of-the-art models.

The recent proliferation of knowledge graphs (KGs) coupled with incomplete or partial information, in the form of missing relations (links) between entities, has fueled a lot of research on knowledge base completion (also known as relation prediction). Several recent works suggest that convolutional neural network (CNN) based models generate richer and more expressive feature embeddings and hence also perform well on relation prediction. However, we observe that these KG embeddings treat triples independently and thus fail to cover the complex and hidden information that is inherently implicit in the local neighborhood surrounding a triple. To this effect, our paper proposes a novel attention based feature embedding that captures both entity and relation features in any given entity's neighborhood. Additionally, we also encapsulate relation clusters and multihop relations in our model. Our empirical study offers insights into the efficacy of our attention based model and we show marked performance gains in comparison to state of the art methods on all datasets.

Two types of knowledge, factoid knowledge from graphs and non-factoid knowledge from unstructured documents, have been studied for knowledge aware open-domain conversation generation, in which edge information in graphs can help generalization of knowledge selectors, and text sentences of non-factoid knowledge can provide rich information for response generation. Fusion of knowledge triples and sentences might yield mutually reinforcing advantages for conversation generation, but there is less study on that. To address this challenge, we propose a knowledge aware chatting machine with three components, augmented knowledge graph containing both factoid and non-factoid knowledge, knowledge selector, and response generator. For knowledge selection on the graph, we formulate it as a problem of multi-hop graph reasoning that is more flexible in comparison with previous one-hop knowledge selection models. To fully leverage long text information that differentiates our graph from others, we improve a state of the art reasoning algorithm with machine reading comprehension technology. We demonstrate that supported by such unified knowledge and knowledge selection method, our system can generate more appropriate and informative responses than baselines.

Most previous work on neural text generation from graph-structured data relies on standard sequence-to-sequence methods. These approaches linearise the input graph to be fed to a recurrent neural network. In this paper, we propose an alternative encoder based on graph convolutional networks that directly exploits the input structure. We report results on two graph-to-sequence datasets that empirically show the benefits of explicitly encoding the input graph structure.

Given a knowledge base or KB containing (noisy) facts about common nouns or generics, such as "all trees produce oxygen" or "some animals live in forests", we consider the problem of inferring additional such facts at a precision similar to that of the starting KB. Such KBs capture general knowledge about the world, and are crucial for various applications such as question answering. Different from commonly studied named entity KBs such as Freebase, generics KBs involve quantification, have more complex underlying regularities, tend to be more incomplete, and violate the commonly used locally closed world assumption (LCWA). We show that existing KB completion methods struggle with this new task, and present the first approach that is successful. Our results demonstrate that external information, such as relation schemas and entity taxonomies, if used appropriately, can be a surprisingly powerful tool in this setting. First, our simple yet effective knowledge guided tensor factorization approach achieves state-of-the-art results on two generics KBs (80% precise) for science, doubling their size at 74%-86% precision. Second, our novel taxonomy guided, submodular, active learning method for collecting annotations about rare entities (e.g., oriole, a bird) is 6x more effective at inferring further new facts about them than multiple active learning baselines.

Knowledge Graph Embedding methods aim at representing entities and relations in a knowledge base as points or vectors in a continuous vector space. Several approaches using embeddings have shown promising results on tasks such as link prediction, entity recommendation, question answering, and triplet classification. However, only a few methods can compute low-dimensional embeddings of very large knowledge bases. In this paper, we propose KG2Vec, a novel approach to Knowledge Graph Embedding based on the skip-gram model. Instead of using a predefined scoring function, we learn it relying on Long Short-Term Memories. We evaluated the goodness of our embeddings on knowledge graph completion and show that KG2Vec is comparable to the quality of the scalable state-of-the-art approaches and can process large graphs by parsing more than a hundred million triples in less than 6 hours on common hardware.

Modeling and generating graphs is fundamental for studying networks in biology, engineering, and social sciences. However, modeling complex distributions over graphs and then efficiently sampling from these distributions is challenging due to the non-unique, high-dimensional nature of graphs and the complex, non-local dependencies that exist between edges in a given graph. Here we propose GraphRNN, a deep autoregressive model that addresses the above challenges and approximates any distribution of graphs with minimal assumptions about their structure. GraphRNN learns to generate graphs by training on a representative set of graphs and decomposes the graph generation process into a sequence of node and edge formations, conditioned on the graph structure generated so far. In order to quantitatively evaluate the performance of GraphRNN, we introduce a benchmark suite of datasets, baselines and novel evaluation metrics based on Maximum Mean Discrepancy, which measure distances between sets of graphs. Our experiments show that GraphRNN significantly outperforms all baselines, learning to generate diverse graphs that match the structural characteristics of a target set, while also scaling to graphs 50 times larger than previous deep models.

北京阿比特科技有限公司