For multi-transmission rate environments, access point (AP) connection methods have been proposed for maximizing system throughput, which is the throughput of an entire system, on the basis of the cooperative behavior of users. These methods derive optimal positions for the cooperative behavior of users, which means that new users move to improve the system throughput when connecting to an AP. However, the conventional method only considers the transmission rate of new users and does not consider existing users, even though it is necessary to consider the transmission rate of all users to improve system throughput. In addition, these method do not take into account the frequency of interference between users. In this paper, we propose an AP connection method which maximizes system throughput by considering the interference between users and the initial position of all users. In addition, our proposed method can improve system throughput by about 6% at most compared to conventional methods.
The advancement of transformer neural networks has significantly elevated the capabilities of sentence similarity models, particularly in creating effective vector representations of natural language inputs. However, these models face notable challenges in domain-specific contexts, especially in highly specialized scientific sub-fields. Traditional methods often struggle in this regime, either overgeneralizing similarities within a niche or being overly sensitive to minor differences, resulting in inaccurate text classification and subpar vector representation. In an era where retrieval augmentation and search are increasingly crucial, precise and concise numerical representations are essential. In this paper, we target this issue by assembling niche datasets using co-citations as a similarity metric, focusing on biomedical domains. We employ two key strategies for fine-tuning state-of-the-art models: 1. Domain-specific Fine-Tuning, which tailors pretrained models to a single domain, and 2. Universal Applicability with Mixture of Experts (MoE), adapting pretrained models with enforced routing for multiple domains simultaneously. Our training approach emphasizes the use of abstracts for faster training, incorporating Multiple Negative Rankings loss for efficient contrastive learning. Notably, our MoE variants, equipped with $N$ experts, achieve the efficacy of $N$ individual models, heralding a new era of versatile, One-Size-Fits-All transformer networks for various tasks. This methodology marks significant advancements in scientific text classification metrics and holds promise for enhancing vector database search and compilation.
Solving partially observable Markov decision processes (POMDPs) with high dimensional and continuous observations, such as camera images, is required for many real life robotics and planning problems. Recent researches suggested machine learned probabilistic models as observation models, but their use is currently too computationally expensive for online deployment. We deal with the question of what would be the implication of using simplified observation models for planning, while retaining formal guarantees on the quality of the solution. Our main contribution is a novel probabilistic bound based on a statistical total variation distance of the simplified model. We show that it bounds the theoretical POMDP value w.r.t. original model, from the empirical planned value with the simplified model, by generalizing recent results of particle-belief MDP concentration bounds. Our calculations can be separated into offline and online parts, and we arrive at formal guarantees without having to access the costly model at all during planning, which is also a novel result. Finally, we demonstrate in simulation how to integrate the bound into the routine of an existing continuous online POMDP solver.
Long patch validation time is a limiting factor for automated program repair (APR). Though the duality between patch validation and mutation testing is recognized, so far there exists no study of systematically adapting mutation testing techniques to general-purpose patch validation. To address this gap, we investigate existing mutation testing techniques and identify five classes of acceleration techniques that are suitable for general-purpose patch validation. Among them, mutant schemata and mutant deduplication have not been adapted to general-purpose patch validation due to the arbitrary changes that third-party APR approaches may introduce. This presents two problems for adaption: 1) the difficulty of implementing the static equivalence analysis required by the state-of-the-art mutant deduplication approach; 2) the difficulty of capturing the changes of patches to the system state at runtime. To overcome these problems, we propose two novel approaches: 1) execution scheduling, which detects the equivalence between patches online, avoiding the static equivalence analysis and its imprecision; 2) interception-based instrumentation, which intercepts the changes of patches to the system state, avoiding a full interpreter and its overhead. Based on the contributions above, we implement ExpressAPR, a general-purpose patch validator for Java that integrates all recognized classes of techniques suitable for patch validation. Our large-scale evaluation with four APR approaches shows that ExpressAPR accelerates patch validation by 137.1x over plainvalidation or 8.8x over the state-of-the-art approach, making patch validation no longer the time bottleneck of APR. Patch validation time for a single bug can be reduced to within a few minutes on mainstream CPUs.
Hyperspectral Imaging comprises excessive data consequently leading to significant challenges for data processing, storage and transmission. Compressive Sensing has been used in the field of Hyperspectral Imaging as a technique to compress the large amount of data. This work addresses the recovery of hyperspectral images 2.5x compressed. A comparative study in terms of the accuracy and the performance of the convex FISTA/ADMM in addition to the greedy gOMP/BIHT/CoSaMP recovery algorithms is presented. The results indicate that the algorithms recover successfully the compressed data, yet the gOMP algorithm achieves superior accuracy and faster recovery in comparison to the other algorithms at the expense of high dependence on unknown sparsity level of the data to recover.
Network traffic classification is an important part of network monitoring and network management. Three traditional methods for network traffic classification are flow-based, session-based, and packet-based, while flow-based and session-based methods cannot meet the real-time requirements and existing packet-based methods will violate user's privacy. To solve the above problems, we propose a network traffic classification method only by the IP packet header, which satisfies the requirements of both the user's privacy protection and online classification performances. Through statistical analyses, we find that IP packet header information is effective on the network traffic classification tasks and this conclusion is also demonstrated by experiments. Furthermore, we propose a novel external attention and convolution mixed (ECM) model for online network traffic classification. This model adopts both low-computational complexity external attention and convolution to respectively extract the byte-level and packet-level characteristics for traffic classification. Therefore, it can achieve high classification accuracy and low time consumption. The experiments show that ECM can achieve the highest classification accuracy and the lowest delay, compared with other state-of-art models. The accuracy can respectively achieve 98.39% and 95.57% on two datasets and the classification time is shorten to meet the real-time requirements.
Researchers commonly use difference-in-differences (DiD) designs to evaluate public policy interventions. While established methodologies exist for estimating effects in the context of binary interventions, policies often result in varied exposures across regions implementing the policy. Yet, existing approaches for incorporating continuous exposures face substantial limitations in addressing confounding variables associated with intervention status, exposure levels, and outcome trends. These limitations significantly constrain policymakers' ability to fully comprehend policy impacts and design future interventions. In this study, we propose innovative estimators for causal effect curves within the DiD framework, accounting for multiple sources of confounding. Our approach accommodates misspecification of a subset of treatment, exposure, and outcome models while avoiding any parametric assumptions on the effect curve. We present the statistical properties of the proposed methods and illustrate their application through simulations and a study investigating the diverse effects of a nutritional excise tax.
Autonomic computing investigates how systems can achieve (user) specified control outcomes on their own, without the intervention of a human operator. Autonomic computing fundamentals have been substantially influenced by those of control theory for closed and open-loop systems. In practice, complex systems may exhibit a number of concurrent and inter-dependent control loops. Despite research into autonomic models for managing computer resources, ranging from individual resources (e.g., web servers) to a resource ensemble (e.g., multiple resources within a data center), research into integrating Artificial Intelligence (AI) and Machine Learning (ML) to improve resource autonomy and performance at scale continues to be a fundamental challenge. The integration of AI/ML to achieve such autonomic and self-management of systems can be achieved at different levels of granularity, from full to human-in-the-loop automation. In this article, leading academics, researchers, practitioners, engineers, and scientists in the fields of cloud computing, AI/ML, and quantum computing join to discuss current research and potential future directions for these fields. Further, we discuss challenges and opportunities for leveraging AI and ML in next generation computing for emerging computing paradigms, including cloud, fog, edge, serverless and quantum computing environments.
Deep neural networks have revolutionized many machine learning tasks in power systems, ranging from pattern recognition to signal processing. The data in these tasks is typically represented in Euclidean domains. Nevertheless, there is an increasing number of applications in power systems, where data are collected from non-Euclidean domains and represented as the graph-structured data with high dimensional features and interdependency among nodes. The complexity of graph-structured data has brought significant challenges to the existing deep neural networks defined in Euclidean domains. Recently, many studies on extending deep neural networks for graph-structured data in power systems have emerged. In this paper, a comprehensive overview of graph neural networks (GNNs) in power systems is proposed. Specifically, several classical paradigms of GNNs structures (e.g., graph convolutional networks, graph recurrent neural networks, graph attention networks, graph generative networks, spatial-temporal graph convolutional networks, and hybrid forms of GNNs) are summarized, and key applications in power systems such as fault diagnosis, power prediction, power flow calculation, and data generation are reviewed in detail. Furthermore, main issues and some research trends about the applications of GNNs in power systems are discussed.
Deep neural networks (DNNs) are successful in many computer vision tasks. However, the most accurate DNNs require millions of parameters and operations, making them energy, computation and memory intensive. This impedes the deployment of large DNNs in low-power devices with limited compute resources. Recent research improves DNN models by reducing the memory requirement, energy consumption, and number of operations without significantly decreasing the accuracy. This paper surveys the progress of low-power deep learning and computer vision, specifically in regards to inference, and discusses the methods for compacting and accelerating DNN models. The techniques can be divided into four major categories: (1) parameter quantization and pruning, (2) compressed convolutional filters and matrix factorization, (3) network architecture search, and (4) knowledge distillation. We analyze the accuracy, advantages, disadvantages, and potential solutions to the problems with the techniques in each category. We also discuss new evaluation metrics as a guideline for future research.
Object detection typically assumes that training and test data are drawn from an identical distribution, which, however, does not always hold in practice. Such a distribution mismatch will lead to a significant performance drop. In this work, we aim to improve the cross-domain robustness of object detection. We tackle the domain shift on two levels: 1) the image-level shift, such as image style, illumination, etc, and 2) the instance-level shift, such as object appearance, size, etc. We build our approach based on the recent state-of-the-art Faster R-CNN model, and design two domain adaptation components, on image level and instance level, to reduce the domain discrepancy. The two domain adaptation components are based on H-divergence theory, and are implemented by learning a domain classifier in adversarial training manner. The domain classifiers on different levels are further reinforced with a consistency regularization to learn a domain-invariant region proposal network (RPN) in the Faster R-CNN model. We evaluate our newly proposed approach using multiple datasets including Cityscapes, KITTI, SIM10K, etc. The results demonstrate the effectiveness of our proposed approach for robust object detection in various domain shift scenarios.