亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Polar codes are the first class of structured channel codes that achieve the symmetric capacity of binary channels with efficient encoding and decoding. In 2019, Arikan proposed a new polar coding scheme referred to as polarization-adjusted convolutional (PAC)} codes. In contrast to polar codes, PAC codes precode the information word using a convolutional code prior to polar encoding. This results in material coding gain over polar code under Fano sequential decoding as well as successive cancellation list (SCL) decoding. Given the advantages of SCL decoding over Fano decoding in certain scenarios such as low-SNR regime or where a constraint on the worst case decoding latency exists, in this paper, we focus on SCL decoding and present a simplified SCL (SSCL) decoding algorithm for PAC codes. SSCL decoding of PAC codes reduces the decoding latency by identifying special nodes in the decoding tree and processing them at the intermediate stages of the graph. Our simulation results show that the performance of PAC codes under SSCL decoding is almost similar to the SCL decoding while having lower decoding latency.

相關內容

Data integration is often performed to consolidate information from multiple disparate data sources during visual data analysis. However, integration operations are usually separate from visual analytics operations such as encode and filter in both interface design and empirical research. We conducted a preliminary user study to investigate whether and how data integration should be incorporated directly into the visual analytics process. We used two interface alternatives featuring contrasting approaches to the data preparation and analysis workflow: manual file-based ex-situ integration as a separate step from visual analytics operations; and automatic UI-based in-situ integration merged with visual analytics operations. Participants were asked to complete specific and free-form tasks with each interface, browsing for patterns, generating insights, and summarizing relationships between attributes distributed across multiple files. Analyzing participants' interactions and feedback, we found both task completion time and total interactions to be similar across interfaces and tasks, as well as unique integration strategies between interfaces and emergent behaviors related to satisficing and cognitive bias. Participants' time spent and interactions revealed that in-situ integration enabled users to spend more time on analysis tasks compared with ex-situ integration. Participants' integration strategies and analytical behaviors revealed differences in interface usage for generating and tracking hypotheses and insights. With these results, we synthesized preliminary guidelines for designing future visual analytics interfaces that can support integrating attributes throughout an active analysis process.

Topic models are a popular tool for clustering and analyzing textual data. They allow texts to be classified on the basis of their affiliation to the previously calculated topics. Despite their widespread use in research and application, an in-depth analysis of topic models is still an open research topic. State-of-the-art methods for interpreting topic models are based on simple visualizations, such as similarity matrices, top-term lists or embeddings, which are limited to a maximum of three dimensions. In this paper, we propose an incidence-geometric method for deriving an ordinal structure from flat topic models, such as non-negative matrix factorization. These enable the analysis of the topic model in a higher (order) dimension and the possibility of extracting conceptual relationships between several topics at once. Due to the use of conceptual scaling, our approach does not introduce any artificial topical relationships, such as artifacts of feature compression. Based on our findings, we present a new visualization paradigm for concept hierarchies based on ordinal motifs. These allow for a top-down view on topic spaces. We introduce and demonstrate the applicability of our approach based on a topic model derived from a corpus of scientific papers taken from 32 top machine learning venues.

Graph neural networks (GNNs) have become increasingly popular in modeling graph-structured data due to their ability to learn node representations by aggregating local structure information. However, it is widely acknowledged that the test graph structure may differ from the training graph structure, resulting in a structure shift. In this paper, we experimentally find that the performance of GNNs drops significantly when the structure shift happens, suggesting that the learned models may be biased towards specific structure patterns. To address this challenge, we propose the Cluster Information Transfer (CIT) mechanism (Code available at //github.com/BUPT-GAMMA/CITGNN), which can learn invariant representations for GNNs, thereby improving their generalization ability to various and unknown test graphs with structure shift. The CIT mechanism achieves this by combining different cluster information with the nodes while preserving their cluster-independent information. By generating nodes across different clusters, the mechanism significantly enhances the diversity of the nodes and helps GNNs learn the invariant representations. We provide a theoretical analysis of the CIT mechanism, showing that the impact of changing clusters during structure shift can be mitigated after transfer. Additionally, the proposed mechanism is a plug-in that can be easily used to improve existing GNNs. We comprehensively evaluate our proposed method on three typical structure shift scenarios, demonstrating its effectiveness in enhancing GNNs' performance.

The application of eigenvalue theory to dual quaternion Hermitian matrices holds significance in the realm of multi-agent formation control. In this paper, we study the Rayleigh quotient iteration (RQI) for solving the right eigenpairs of dual quaternion Hermitian matrices. Combined with dual representation, the RQI algorithm can effectively compute the extreme eigenvalue along with the associated eigenvector of the large dual quaternion Hermitian matrices. Furthermore, a convergence analysis of the Rayleigh quotient iteration is derived, demonstrating a local convergence rate of at least cubic, which is faster than the linear convergence rate of the power method. Numerical examples are provided to illustrate the high accuracy and low CPU time cost of the proposed Rayleigh quotient iteration compared with the power method for solving the dual quaternion Hermitian eigenvalue problem.

Dense retrieval methods have demonstrated promising performance in multilingual information retrieval, where queries and documents can be in different languages. However, dense retrievers typically require a substantial amount of paired data, which poses even greater challenges in multilingual scenarios. This paper introduces UMR, an Unsupervised Multilingual dense Retriever trained without any paired data. Our approach leverages the sequence likelihood estimation capabilities of multilingual language models to acquire pseudo labels for training dense retrievers. We propose a two-stage framework which iteratively improves the performance of multilingual dense retrievers. Experimental results on two benchmark datasets show that UMR outperforms supervised baselines, showcasing the potential of training multilingual retrievers without paired data, thereby enhancing their practicality. Our source code, data, and models are publicly available at //github.com/MiuLab/UMR

Mobile networks have increased spectral efficiency through advanced multiplexing strategies that are coordinated by base stations (BS) in licensed spectrum. However, external interference on clients leads to significant performance degradation during dynamic (unlicensed) spectrum access (DSA). We introduce the notion of network tomography for DSA, whereby clients are transformed into spectrum sensors, whose joint access statistics are measured and used to account for interfering sources. Albeit promising, performing such tomography naively incurs an impractical overhead that scales exponentially with the multiplexing order of the strategies deployed -- which will only continue to grow with 5G/6G technologies. To this end, we propose a novel, scalable network tomography framework called NeTo-X that estimates joint client access statistics with just linear overhead, and forms a blue-print of the interference, thus enabling efficient DSA for future networks. NeTo-X's design incorporates intelligent algorithms that leverage multi-channel diversity and the spatial locality of interference impact on clients to accurately estimate the desired interference statistics from just pair-wise measurements of its clients. The merits of its framework are showcased in the context of resource management and jammer localization applications, where its performance significantly outperforms baseline approaches and closely approximates optimal performance at a scalable overhead.

Ensemble transform Kalman filtering (ETKF) data assimilation is often used to combine available observations with numerical simulations to obtain statistically accurate and reliable state representations in dynamical systems. However, it is well known that the commonly used Gaussian distribution assumption introduces biases for state variables that admit discontinuous profiles, which are prevalent in nonlinear partial differential equations. This investigation designs a new structurally informed non-Gaussian prior that exploits statistical information from the simulated state variables. In particular, we construct a new weighting matrix based on the second moment of the gradient information of the state variable to replace the prior covariance matrix used for model/data compromise in the ETKF data assimilation framework. We further adapt our weighting matrix to include information in discontinuity regions via a clustering technique. Our numerical experiments demonstrate that this new approach yields more accurate estimates than those obtained using ETKF on shallow water equations, even when ETKF is enhanced with inflation and localization techniques.

Large Language Models (LLMs) have shown excellent generalization capabilities that have led to the development of numerous models. These models propose various new architectures, tweaking existing architectures with refined training strategies, increasing context length, using high-quality training data, and increasing training time to outperform baselines. Analyzing new developments is crucial for identifying changes that enhance training stability and improve generalization in LLMs. This survey paper comprehensively analyses the LLMs architectures and their categorization, training strategies, training datasets, and performance evaluations and discusses future research directions. Moreover, the paper also discusses the basic building blocks and concepts behind LLMs, followed by a complete overview of LLMs, including their important features and functions. Finally, the paper summarizes significant findings from LLM research and consolidates essential architectural and training strategies for developing advanced LLMs. Given the continuous advancements in LLMs, we intend to regularly update this paper by incorporating new sections and featuring the latest LLM models.

Residual networks (ResNets) have displayed impressive results in pattern recognition and, recently, have garnered considerable theoretical interest due to a perceived link with neural ordinary differential equations (neural ODEs). This link relies on the convergence of network weights to a smooth function as the number of layers increases. We investigate the properties of weights trained by stochastic gradient descent and their scaling with network depth through detailed numerical experiments. We observe the existence of scaling regimes markedly different from those assumed in neural ODE literature. Depending on certain features of the network architecture, such as the smoothness of the activation function, one may obtain an alternative ODE limit, a stochastic differential equation or neither of these. These findings cast doubts on the validity of the neural ODE model as an adequate asymptotic description of deep ResNets and point to an alternative class of differential equations as a better description of the deep network limit.

Embedding entities and relations into a continuous multi-dimensional vector space have become the dominant method for knowledge graph embedding in representation learning. However, most existing models ignore to represent hierarchical knowledge, such as the similarities and dissimilarities of entities in one domain. We proposed to learn a Domain Representations over existing knowledge graph embedding models, such that entities that have similar attributes are organized into the same domain. Such hierarchical knowledge of domains can give further evidence in link prediction. Experimental results show that domain embeddings give a significant improvement over the most recent state-of-art baseline knowledge graph embedding models.

北京阿比特科技有限公司