亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Humans need a sense of community (SOC), and social media platforms afford opportunities to address this need by providing users with a sense of virtual community (SOVC). This paper explores SOVC on Reddit and is motivated by two goals: (1) providing researchers with an excellent resource for methodological decisions in studies of Reddit communities; and (2) creating the foundation for a new class of research methods and community support tools that reflect users' experiences of SOVC. To ensure that methods are respectfully and ethically designed in service and accountability to impacted communities, our work takes a qualitative, community-centered approach by engaging with two key stakeholder groups. First, we interviewed 21 researchers to understand how they study "community" on Reddit. Second, we surveyed 12 subreddits to gain insight into user experiences of SOVC. Results show that some research methods can broadly reflect users' SOVC regardless of the topic or type of subreddit. However, user responses also evidenced the existence of five distinct Community Archetypes: Topical Q&A, Learning & Perspective Broadening, Social Support, Content Generation, and Affiliation with an Entity. We offer the Community Archetypes framework to support future work in designing methods that align more closely with user experiences of SOVC and to create community support tools that can meaningfully nourish the human need for SOC/SOVC in our modern world.

相關內容

這個新版本的工具會議系列恢復了從1989年到2012年的50個會議的傳統。工具最初是“面向對象語言和系統的技術”,后來發展到包括軟件技術的所有創新方面。今天許多最重要的軟件概念都是在這里首次引入的。2019年TOOLS 50+1在俄羅斯喀山附近舉行,以同樣的創新精神、對所有與軟件相關的事物的熱情、科學穩健性和行業適用性的結合以及歡迎該領域所有趨勢和社區的開放態度,延續了該系列。 官網鏈接: · 面部識別 · INTERACT · Performer · 可理解性 ·
2023 年 11 月 17 日

As AI models evolve, understanding the influence of underlying models on user experience and performance in AI-infused systems becomes critical, particularly while transitioning between different model versions. We studied the influence of model change by conducting two complementary studies in the context of AI-based facial recognition for historical person identification tasks. First, we ran an online experiment where crowd workers interacted with two different facial recognition models: an older version and a recently updated, developer-certified more accurate model. Second, we studied a real-world deployment of these models on a popular historical photo platform through a diary study with 10 users. Our findings sheds light on models affecting human-AI team performance, users' abilities to differentiate between different models, the folk theories they develop, and how these theories influence their preferences. Drawing from these insights, we discuss design implications for updating models in AI-infused systems.

Large language models (LLMs) have revolutionized the landscape of Natural Language Processing systems, but are computationally expensive. To reduce the cost without sacrificing performance, previous studies have explored various approaches to harness the potential of Small Language Models (SLMs) as cost-effective alternatives to their larger counterparts. Driven by findings that SLMs and LLMs exhibit complementary strengths in a structured knowledge extraction task, this work presents a novel SLM/LLM routing framework designed to improve computational efficiency and enhance task performance. First, exemplar pools are created to represent the types of contexts where each LM provides a more reliable answer, leveraging a sentence embedding fine-tuned so that context similarity is close to dialogue state similarity. Then, during inference, the k-nearest exemplars to the testing instance are retrieved, and the instance is routed according to majority vote. In dialogue state tracking tasks, the proposed routing framework enhances performance substantially compared to relying solely on LLMs, while reducing the computational costs by over 50%.

Despite the many use cases for large language models (LLMs) in creating personalized chatbots, there has been limited research on evaluating the extent to which the behaviors of personalized LLMs accurately and consistently reflect specific personality traits. We consider studying the behavior of LLM-based agents, referred to as LLM personas, and present a case study with ChatGPT and GPT-4. The study investigates whether LLMs can generate content that aligns with their assigned personality profiles. To this end, we create distinct LLM personas based on the Big Five personality model, have them complete the 44-item Big Five Inventory (BFI) personality test and a story writing task, and then assess their essays with automatic and human evaluations. Results show that LLM personas' self-reported BFI scores are consistent with their designated personality types, with large effect sizes observed across five traits. Additionally, there are significant correlations between the assigned personality types and certain psycholinguistic features of their writings, as measured by the Linguistic Inquiry and Word Count (LIWC) tool. Interestingly, human evaluators perceive the stories as less personal when told that the stories are authored by AI. However, their judgments on other aspects of the writing such as readability, cohesiveness, redundancy, likeability, and believability remain largely unaffected. Notably, when evaluators were informed about the AI authorship, their accuracy in identifying the intended personality traits from the stories decreased by more than 10% for some traits. This research marks a significant step forward in understanding the capabilities of LLMs to express personality traits.

Trusted Execution Environments (TEEs) are deployed in many CPU designs because of the confidentiality and integrity guarantees they provide. ARM TrustZone is a TEE extensively deployed on smart phones, IoT devices, and notebooks. Specifically, TrustZone is used to separate code execution and data into two worlds, normal world and secure world. However, this separation inherently prevents traditional fuzzing approaches which rely upon coverage-guided feedback and existing fuzzing research is, therefore, extremely limited. In this paper, we present a native and generic method to perform efficient and scalable feedback-driven fuzzing on Trusted Applications (TAs) using ARM CoreSight. We propose LightEMU, a novel fuzzing framework that allows us to fuzz TAs by decoupling them from relied TEE. We argue that LightEMU is a promising first-stage approach for rapidly discovering TA vulnerabilities prior to investing effort in whole system TEE evaluation precisely because the majority of publicly disclosed TrustZone bugs reside in the TA code itself. We implement LightEMU and adapt it to Teegris, Trusty, OP-TEE and QSEE and evaluate 8 real-world TAs while triggering 3 unique crashes and achieving x10 time speedup when fuzzing TAs using the state-of-the-art TrustZone fuzzing framework.

Understanding events in texts is a core objective of natural language understanding, which requires detecting event occurrences, extracting event arguments, and analyzing inter-event relationships. However, due to the annotation challenges brought by task complexity, a large-scale dataset covering the full process of event understanding has long been absent. In this paper, we introduce MAVEN-Arg, which augments MAVEN datasets with event argument annotations, making the first all-in-one dataset supporting event detection, event argument extraction (EAE), and event relation extraction. As an EAE benchmark, MAVEN-Arg offers three main advantages: (1) a comprehensive schema covering 162 event types and 612 argument roles, all with expert-written definitions and examples; (2) a large data scale, containing 98,591 events and 290,613 arguments obtained with laborious human annotation; (3) the exhaustive annotation supporting all task variants of EAE, which annotates both entity and non-entity event arguments in document level. Experiments indicate that MAVEN-Arg is quite challenging for both fine-tuned EAE models and proprietary large language models (LLMs). Furthermore, to demonstrate the benefits of an all-in-one dataset, we preliminarily explore a potential application, future event prediction, with LLMs. MAVEN-Arg and our code can be obtained from //github.com/THU-KEG/MAVEN-Argument.

For a long time, humanity has pursued artificial intelligence (AI) equivalent to or surpassing the human level, with AI agents considered a promising vehicle for this pursuit. AI agents are artificial entities that sense their environment, make decisions, and take actions. Many efforts have been made to develop intelligent AI agents since the mid-20th century. However, these efforts have mainly focused on advancement in algorithms or training strategies to enhance specific capabilities or performance on particular tasks. Actually, what the community lacks is a sufficiently general and powerful model to serve as a starting point for designing AI agents that can adapt to diverse scenarios. Due to the versatile and remarkable capabilities they demonstrate, large language models (LLMs) are regarded as potential sparks for Artificial General Intelligence (AGI), offering hope for building general AI agents. Many research efforts have leveraged LLMs as the foundation to build AI agents and have achieved significant progress. We start by tracing the concept of agents from its philosophical origins to its development in AI, and explain why LLMs are suitable foundations for AI agents. Building upon this, we present a conceptual framework for LLM-based agents, comprising three main components: brain, perception, and action, and the framework can be tailored to suit different applications. Subsequently, we explore the extensive applications of LLM-based agents in three aspects: single-agent scenarios, multi-agent scenarios, and human-agent cooperation. Following this, we delve into agent societies, exploring the behavior and personality of LLM-based agents, the social phenomena that emerge when they form societies, and the insights they offer for human society. Finally, we discuss a range of key topics and open problems within the field.

Knowledge graph embedding (KGE) is a increasingly popular technique that aims to represent entities and relations of knowledge graphs into low-dimensional semantic spaces for a wide spectrum of applications such as link prediction, knowledge reasoning and knowledge completion. In this paper, we provide a systematic review of existing KGE techniques based on representation spaces. Particularly, we build a fine-grained classification to categorise the models based on three mathematical perspectives of the representation spaces: (1) Algebraic perspective, (2) Geometric perspective, and (3) Analytical perspective. We introduce the rigorous definitions of fundamental mathematical spaces before diving into KGE models and their mathematical properties. We further discuss different KGE methods over the three categories, as well as summarise how spatial advantages work over different embedding needs. By collating the experimental results from downstream tasks, we also explore the advantages of mathematical space in different scenarios and the reasons behind them. We further state some promising research directions from a representation space perspective, with which we hope to inspire researchers to design their KGE models as well as their related applications with more consideration of their mathematical space properties.

In pace with developments in the research field of artificial intelligence, knowledge graphs (KGs) have attracted a surge of interest from both academia and industry. As a representation of semantic relations between entities, KGs have proven to be particularly relevant for natural language processing (NLP), experiencing a rapid spread and wide adoption within recent years. Given the increasing amount of research work in this area, several KG-related approaches have been surveyed in the NLP research community. However, a comprehensive study that categorizes established topics and reviews the maturity of individual research streams remains absent to this day. Contributing to closing this gap, we systematically analyzed 507 papers from the literature on KGs in NLP. Our survey encompasses a multifaceted review of tasks, research types, and contributions. As a result, we present a structured overview of the research landscape, provide a taxonomy of tasks, summarize our findings, and highlight directions for future work.

This work considers the question of how convenient access to copious data impacts our ability to learn causal effects and relations. In what ways is learning causality in the era of big data different from -- or the same as -- the traditional one? To answer this question, this survey provides a comprehensive and structured review of both traditional and frontier methods in learning causality and relations along with the connections between causality and machine learning. This work points out on a case-by-case basis how big data facilitates, complicates, or motivates each approach.

Small data challenges have emerged in many learning problems, since the success of deep neural networks often relies on the availability of a huge amount of labeled data that is expensive to collect. To address it, many efforts have been made on training complex models with small data in an unsupervised and semi-supervised fashion. In this paper, we will review the recent progresses on these two major categories of methods. A wide spectrum of small data models will be categorized in a big picture, where we will show how they interplay with each other to motivate explorations of new ideas. We will review the criteria of learning the transformation equivariant, disentangled, self-supervised and semi-supervised representations, which underpin the foundations of recent developments. Many instantiations of unsupervised and semi-supervised generative models have been developed on the basis of these criteria, greatly expanding the territory of existing autoencoders, generative adversarial nets (GANs) and other deep networks by exploring the distribution of unlabeled data for more powerful representations. While we focus on the unsupervised and semi-supervised methods, we will also provide a broader review of other emerging topics, from unsupervised and semi-supervised domain adaptation to the fundamental roles of transformation equivariance and invariance in training a wide spectrum of deep networks. It is impossible for us to write an exclusive encyclopedia to include all related works. Instead, we aim at exploring the main ideas, principles and methods in this area to reveal where we are heading on the journey towards addressing the small data challenges in this big data era.

北京阿比特科技有限公司