亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

This paper considers a massive random access problem in which a large number of sporadically active devices wish to communicate with a base station (BS) equipped with massive multiple-input multiple-output (MIMO) antennas. Each device is preassigned a unique signature sequence, and the BS identifies the active devices by detecting which sequences are transmitted. This device activity detection problem can be formulated as a maximum likelihood estimation (MLE) problem for which the sample covariance matrix of the received signal is a sufficient statistic. The goal of this paper is to characterize the feasible set of problem parameters under which this covariance based approach is able to successfully recover the device activities in the massive MIMO regime. Through an analysis of the asymptotic behaviors of MLE via its associated Fisher information matrix, this paper derives a necessary and sufficient condition on the Fisher information matrix to ensure a vanishing probability of detection error as the number of antennas goes to infinity, based on which a numerical phase transition analysis is obtained. This condition is also examined from a perspective of covariance matching, which relates the phase transition analysis to a recently derived scaling law. Further, we provide a characterization of the distribution of the estimation error in MLE, based on which the error probabilities in device activity detection can be accurately predicted. Finally, this paper studies a random access scheme with joint device activity and data detection and analyzes its performance in a similar way.

相關內容

Modern wireless cellular networks use massive multiple-input multiple-output (MIMO) technology. This technology involves operations with an antenna array at a base station that simultaneously serves multiple mobile devices which also use multiple antennas on their side. For this, various precoding and detection techniques are used, allowing each user to receive the signal intended for him from the base station. There is an important class of linear precoding called Regularized Zero-Forcing (RZF). In this work, we propose Adaptive RZF (ARZF) with a special kind of regularization matrix with different coefficients for each layer of multi-antenna users. These regularization coefficients are defined by explicit formulas based on SVD decompositions of user channel matrices. We study the optimization problem, which is solved by the proposed algorithm, with the connection to other possible problem statements. We also compare the proposed algorithm with state-of-the-art linear precoding algorithms on simulations with the Quadriga channel model. The proposed approach provides a significant increase in quality with the same computation time as in the reference methods.

This paper considers the problem of measure estimation under the barycentric coding model (BCM), in which an unknown measure is assumed to belong to the set of Wasserstein-2 barycenters of a finite set of known measures. Estimating a measure under this model is equivalent to estimating the unknown barycenteric coordinates. We provide novel geometrical, statistical, and computational insights for measure estimation under the BCM, consisting of three main results. Our first main result leverages the Riemannian geometry of Wasserstein-2 space to provide a procedure for recovering the barycentric coordinates as the solution to a quadratic optimization problem assuming access to the true reference measures. The essential geometric insight is that the parameters of this quadratic problem are determined by inner products between the optimal displacement maps from the given measure to the reference measures defining the BCM. Our second main result then establishes an algorithm for solving for the coordinates in the BCM when all the measures are observed empirically via i.i.d. samples. We prove precise rates of convergence for this algorithm -- determined by the smoothness of the underlying measures and their dimensionality -- thereby guaranteeing its statistical consistency. Finally, we demonstrate the utility of the BCM and associated estimation procedures in three application areas: (i) covariance estimation for Gaussian measures; (ii) image processing; and (iii) natural language processing.

We study the performance of a phase-noise impaired double reconfigurable intelligent surface (RIS)-aided multiuser (MU) multiple-input single-output (MISO) system under spatial correlation at both RISs and base-station (BS). The downlink achievable rate is derived in closed-form under maximum ratio transmission (MRT) precoding. In addition, we obtain the optimal phase-shift design at both RISs in closed-form for the considered channel and phase-noise models. Numerical results validate the analytical expressions, and highlight the effects of different system parameters on the achievable rate. In particular, it is demonstrated that while phase-noise at RISs and spatial correlation at BS are capacity limiting factors, the spatial correlation at both RISs is essential to obtain high achievable rates.

This paper presents a new approach to estimation and inference in panel data models with interactive fixed effects, where the unobserved factor loadings are allowed to be correlated with the regressors. A distinctive feature of the proposed approach is to assume a nonparametric specification for the factor loadings, that allows us to partial out the interactive effects using sieve basis functions to estimate the slope parameters directly. The new estimator adopts the well-known partial least squares form, and its $\sqrt{NT}$-consistency and asymptotic normality are shown. Later, the common factors are estimated using principal component analysis (PCA), and the corresponding convergence rates are obtained. A Monte Carlo study indicates good performance in terms of mean squared error. We apply our methodology to analyze the determinants of growth rates in OECD countries.

The ability of a radar to discriminate in both range and Doppler velocity is completely characterized by the ambiguity function (AF) of its transmit waveform. Mathematically, it is obtained by correlating the waveform with its Doppler-shifted and delayed replicas. We consider the inverse problem of designing a radar transmit waveform that satisfies the specified AF magnitude. This process can be viewed as a signal reconstruction with some variation of phase retrieval methods. We provide a trust-region algorithm that minimizes a smoothed non-convex least-squares objective function to iteratively recover the underlying signal-of-interest for either time- or band-limited support. The method first approximates the signal using an iterative spectral algorithm and then refines the attained initialization based upon a sequence of gradient iterations. Our theoretical analysis shows that unique signal reconstruction is possible using signal samples no more than thrice the number of signal frequencies or time samples. Numerical experiments demonstrate that our method recovers both time- and band-limited signals from even sparsely and randomly sampled AFs with mean-square-error of $1\times 10^{-6}$ and $9\times 10^{-2}$ for the full noiseless samples and sparse noisy samples, respectively.

Tensor optimization is crucial to massive machine learning and signal processing tasks. In this paper, we consider tensor optimization with a convex and well-conditioned objective function and reformulate it into a nonconvex optimization using the Burer-Monteiro type parameterization. We analyze the local convergence of applying vanilla gradient descent to the factored formulation and establish a local regularity condition under mild assumptions. We also provide a linear convergence analysis of the gradient descent algorithm started in a neighborhood of the true tensor factors. Complementary to the local analysis, this work also characterizes the global geometry of the best rank-one tensor approximation problem and demonstrates that for orthogonally decomposable tensors the problem has no spurious local minima and all saddle points are strict except for the one at zero which is a third-order saddle point.

We consider the problem of recovering a signal from the magnitudes of affine measurements, which is also known as {\em affine phase retrieval}. In this paper, we formulate affine phase retrieval as an optimization problem and develop a second-order algorithm based on Newton method to solve it. Besides being able to convert into a phase retrieval problem, affine phase retrieval has its unique advantages in its solution. For example, the linear information in the observation makes it possible to solve this problem with second-order algorithms under complex measurements. Another advantage is that our algorithm doesn't have any special requirements for the initial point, while an appropriate initial value is essential for most non-convex phase retrieval algorithms. Starting from zero, our algorithm generates iteration point by Newton method, and we prove that the algorithm can quadratically converge to the true signal without any ambiguity for both Gaussian measurements and CDP measurements. In addition, we also use some numerical simulations to verify the conclusions and to show the effectiveness of the algorithm.

In this work, we are interested in building the fully discrete scheme for stochastic fractional diffusion equation driven by fractional Brownian sheet which is temporally and spatially fractional with Hurst parameters $H_{1}, H_{2} \in(0,\frac{1}{2}]$. We first provide the regularity of the solution. Then we employ the Wong-Zakai approximation to regularize the rough noise and discuss the convergence of the approximation. Next, the finite element and backward Euler convolution quadrature methods are used to discretize spatial and temporal operators for the obtained regularized equation, and the detailed error analyses are developed. Finally, some numerical examples are presented to confirm the theory.

Statistical divergences (SDs), which quantify the dissimilarity between probability distributions, are a basic constituent of statistical inference and machine learning. A modern method for estimating those divergences relies on parametrizing an empirical variational form by a neural network (NN) and optimizing over parameter space. Such neural estimators are abundantly used in practice, but corresponding performance guarantees are partial and call for further exploration. We establish non-asymptotic absolute error bounds for a neural estimator realized by a shallow NN, focusing on four popular $\mathsf{f}$-divergences -- Kullback-Leibler, chi-squared, squared Hellinger, and total variation. Our analysis relies on non-asymptotic function approximation theorems and tools from empirical process theory to bound the two sources of error involved: function approximation and empirical estimation. The bounds characterize the effective error in terms of NN size and the number of samples, and reveal scaling rates that ensure consistency. For compactly supported distributions, we further show that neural estimators of the first three divergences above with appropriate NN growth-rate are minimax rate-optimal, achieving the parametric convergence rate.

Escaping saddle points is a central research topic in nonconvex optimization. In this paper, we propose a simple gradient-based algorithm such that for a smooth function $f\colon\mathbb{R}^n\to\mathbb{R}$, it outputs an $\epsilon$-approximate second-order stationary point in $\tilde{O}(\log n/\epsilon^{1.75})$ iterations. Compared to the previous state-of-the-art algorithms by Jin et al. with $\tilde{O}((\log n)^{4}/\epsilon^{2})$ or $\tilde{O}((\log n)^{6}/\epsilon^{1.75})$ iterations, our algorithm is polynomially better in terms of $\log n$ and matches their complexities in terms of $1/\epsilon$. For the stochastic setting, our algorithm outputs an $\epsilon$-approximate second-order stationary point in $\tilde{O}((\log n)^{2}/\epsilon^{4})$ iterations. Technically, our main contribution is an idea of implementing a robust Hessian power method using only gradients, which can find negative curvature near saddle points and achieve the polynomial speedup in $\log n$ compared to the perturbed gradient descent methods. Finally, we also perform numerical experiments that support our results.

北京阿比特科技有限公司