Accelerating programs is typically done by recognizing code idioms matching high-performance libraries or hardware interfaces. However, recognizing such idioms automatically is challenging. The idiom recognition machinery is difficult to write and requires expert knowledge. In addition, slight variations in the input program might hide the idiom and defeat the recognizer. This paper advocates for the use of a minimalist functional array language supporting a small, but expressive, set of operators. The minimalist design leads to a tiny sets of rewrite rules, which encode the language semantics. Crucially, the same minimalist language is also used to encode idioms. This removes the need for hand-crafted analysis passes, or for having to learn a complex domain-specific language to define the idioms. Coupled with equality saturation, this approach is able to match the core functions from the BLAS and PyTorch libraries on a set of computational kernels. Compared to reference C kernel implementations, the approach produces a geometric mean speedup of 1.46x for C programs using BLAS, when generating such programs from the high-level minimalist language.
Efficient exploration is a key challenge in contextual bandits due to the large size of their action space, where uninformed exploration can result in computational and statistical inefficiencies. Fortunately, the rewards of actions are often correlated and this can be leveraged to explore them efficiently. In this work, we capture such correlations using pre-trained diffusion models; upon which we design diffusion Thompson sampling (dTS). Both theoretical and algorithmic foundations are developed for dTS, and empirical evaluation also shows its favorable performance.
Various methods for designing input features have been proposed for fault recognition in rotating machines using one-dimensional raw sensor data. The available methods are complex, rely on empirical approaches, and may differ depending on the condition monitoring data used. Therefore, this article proposes a novel algorithm to design input features that unifies the feature extraction process for different time-series sensor data. This new insight for designing/extracting input features is obtained through the lens of histogram theory. The proposed algorithm extracts discriminative input features, which are suitable for a simple classifier to deep neural network-based classifiers. The designed input features are given as input to the classifier with end-to-end training in a single framework for machine conditions recognition. The proposed scheme has been validated through three real-time datasets: a) acoustic dataset, b) CWRU vibration dataset, and c) IMS vibration dataset. The real-time results and comparative study show the effectiveness of the proposed scheme for the prediction of the machine's health states.
The remarkable instruction-following capability of large language models (LLMs) has sparked a growing interest in automatically learning suitable prompts. However, while many effective methods have been proposed, the cost incurred during the learning process (e.g., accessing LLM and evaluating the responses) has not been considered. To overcome this limitation, this work explicitly incorporates a finite budget constraint into prompt learning. Towards developing principled solutions, a novel connection is established between prompt learning and fixed-budget best arm identification (BAI-FB) in multi-armed bandits (MAB). Based on this connection, a general framework TRIPLE (besT aRm Identification for Prompt LEarning) is proposed to harness the power of BAI-FB in prompt learning systematically. Unique characteristics of prompt learning further lead to two embedding-based enhancements of TRIPLE by exploiting the ideas of clustering and function approximation. Extensive experiments on multiple well-adopted tasks using both GPT 3.5 and Llama2 demonstrate the significant performance improvement of TRIPLE over the previous baselines while satisfying the limited budget constraints.
The problem of goal-oriented semantic filtering and timely source coding in multiuser communication systems is considered here. We study a distributed monitoring system in which multiple information sources, each observing a physical process, provide status update packets to multiple monitors having heterogeneous goals. Two semantic filtering schemes are first proposed as a means to admit or drop arrival packets based on their goal-dependent importance, which is a function of the intrinsic and extrinsic attributes of information and the probability of occurrence of each realization. Admitted packets at each sensor are then encoded and transmitted over block-fading wireless channels so that served monitors can timely fulfill their goals. A truncated error control scheme is derived, which allows transmitters to drop or retransmit undelivered packets based on their significance. Then, we formulate the timely source encoding optimization problem and analytically derive the optimal codeword lengths assigned to the admitted packets which maximize a weighted sum of semantic utility functions for all pairs of communicating sensors and monitors. Our analytical and numerical results provide the optimal design parameters for different arrival rates and highlight the improvement in timely status update delivery using the proposed semantic filtering, source coding, and error control schemes.
Security is a growing problem that needs hardware support. Memristors provide an alternative technology for hardware-supported security implementation. This paper presents a specific technique that utilizes the benefits of hybrid CMOS-memristors technology demonstrated with SHA3 over implementations that use only memristor technology. In the proposed technique, SHA3 is implemented in a set of perpendicular crossbar arrays structured to facilitate logic implementation and circular bit rotation (Rho operation), which is perhaps the most complex operation in SHA3 when carried out in memristor arrays. The Rho operation itself is implemented with CMOS multiplexers (MUXs). The proposed accelerator is standby power-free and circumvents the memory access bottleneck in conventional computers. In addition, our design obscures the intermediate values from the I/O interface and outperforms the state-of-the-art memristor-based designs in terms of size and energy. Demonstrating the memristor implementation of SHA3 provides an impetus for utilizing memristors in information security applications.
AI recommender systems are sought for decision support by providing suggestions to operators responsible for making final decisions. However, these systems are typically considered black boxes, and are often presented without any context or insight into the underlying algorithm. As a result, recommender systems can lead to miscalibrated user reliance and decreased situation awareness. Recent work has focused on improving the transparency of recommender systems in various ways such as improving the recommender's analysis and visualization of the figures of merit, providing explanations for the recommender's decision, as well as improving user training or calibrating user trust. In this paper, we introduce an alternative transparency technique of structuring the order in which contextual information and the recommender's decision are shown to the human operator. This technique is designed to improve the operator's situation awareness and therefore the shared situation awareness between the operator and the recommender system. This paper presents the results of a two-phase between-subjects study in which participants and a recommender system jointly make a high-stakes decision. We varied the amount of contextual information the participant had, the assessment technique of the figures of merit, and the reliability of the recommender system. We found that providing contextual information upfront improves the team's shared situation awareness by improving the human decision maker's initial and final judgment, as well as their ability to discern the recommender's error boundary. Additionally, this technique accurately calibrated the human operator's trust in the recommender. This work proposes and validates a way to provide model-agnostic transparency into AI systems that can support the human decision maker and lead to improved team performance.
Deep reinforcement learning algorithms can perform poorly in real-world tasks due to the discrepancy between source and target environments. This discrepancy is commonly viewed as the disturbance in transition dynamics. Many existing algorithms learn robust policies by modeling the disturbance and applying it to source environments during training, which usually requires prior knowledge about the disturbance and control of simulators. However, these algorithms can fail in scenarios where the disturbance from target environments is unknown or is intractable to model in simulators. To tackle this problem, we propose a novel model-free actor-critic algorithm -- namely, state-conservative policy optimization (SCPO) -- to learn robust policies without modeling the disturbance in advance. Specifically, SCPO reduces the disturbance in transition dynamics to that in state space and then approximates it by a simple gradient-based regularizer. The appealing features of SCPO include that it is simple to implement and does not require additional knowledge about the disturbance or specially designed simulators. Experiments in several robot control tasks demonstrate that SCPO learns robust policies against the disturbance in transition dynamics.
Object detection typically assumes that training and test data are drawn from an identical distribution, which, however, does not always hold in practice. Such a distribution mismatch will lead to a significant performance drop. In this work, we aim to improve the cross-domain robustness of object detection. We tackle the domain shift on two levels: 1) the image-level shift, such as image style, illumination, etc, and 2) the instance-level shift, such as object appearance, size, etc. We build our approach based on the recent state-of-the-art Faster R-CNN model, and design two domain adaptation components, on image level and instance level, to reduce the domain discrepancy. The two domain adaptation components are based on H-divergence theory, and are implemented by learning a domain classifier in adversarial training manner. The domain classifiers on different levels are further reinforced with a consistency regularization to learn a domain-invariant region proposal network (RPN) in the Faster R-CNN model. We evaluate our newly proposed approach using multiple datasets including Cityscapes, KITTI, SIM10K, etc. The results demonstrate the effectiveness of our proposed approach for robust object detection in various domain shift scenarios.
Automatically creating the description of an image using any natural languages sentence like English is a very challenging task. It requires expertise of both image processing as well as natural language processing. This paper discuss about different available models for image captioning task. We have also discussed about how the advancement in the task of object recognition and machine translation has greatly improved the performance of image captioning model in recent years. In addition to that we have discussed how this model can be implemented. In the end, we have also evaluated the performance of model using standard evaluation matrices.
While it is nearly effortless for humans to quickly assess the perceptual similarity between two images, the underlying processes are thought to be quite complex. Despite this, the most widely used perceptual metrics today, such as PSNR and SSIM, are simple, shallow functions, and fail to account for many nuances of human perception. Recently, the deep learning community has found that features of the VGG network trained on the ImageNet classification task has been remarkably useful as a training loss for image synthesis. But how perceptual are these so-called "perceptual losses"? What elements are critical for their success? To answer these questions, we introduce a new Full Reference Image Quality Assessment (FR-IQA) dataset of perceptual human judgments, orders of magnitude larger than previous datasets. We systematically evaluate deep features across different architectures and tasks and compare them with classic metrics. We find that deep features outperform all previous metrics by huge margins. More surprisingly, this result is not restricted to ImageNet-trained VGG features, but holds across different deep architectures and levels of supervision (supervised, self-supervised, or even unsupervised). Our results suggest that perceptual similarity is an emergent property shared across deep visual representations.