亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Consider a star network where each local node possesses a set of test statistics that exhibit a symmetric distribution around zero when their corresponding null hypothesis is true. This paper investigates statistical inference problems in networks concerning the aggregation of this general type of statistics and global error rate control under communication constraints in various scenarios. The study proposes communication-efficient algorithms that are built on established non-parametric methods, such as the Wilcoxon and sign tests, as well as modern inference methods such as the Benjamini-Hochberg (BH) and Barber-Candes (BC) procedures, coupled with sampling and quantization operations. The proposed methods are evaluated through extensive simulation studies.

相關內容

Networking:IFIP International Conferences on Networking。 Explanation:國際網絡會議。 Publisher:IFIP。 SIT:

Quantum networks (QNs) relying on free-space optical (FSO) quantum channels can support quantum applications in environments wherein establishing an optical fiber infrastructure is challenging and costly. However, FSO-based QNs require a clear line-of-sight (LoS) between users, which is challenging due to blockages and natural obstacles. In this paper, a reconfigurable intelligent surface (RIS)-assisted FSO-based QN is proposed as a cost-efficient framework providing a virtual LoS between users for entanglement distribution. A novel modeling of the quantum noise and losses experienced by quantum states over FSO channels defined by atmospheric losses, turbulence, and pointing errors is derived. Then, the joint optimization of entanglement distribution and RIS placement problem is formulated, under heterogeneous entanglement rate and fidelity constraints. This problem is solved using a simulated annealing metaheuristic algorithm. Simulation results show that the proposed framework effectively meets the minimum fidelity requirements of all users' quantum applications. This is in stark contrast to baseline algorithms that lead to a drop of at least 83% in users' end-to-end fidelities. The proposed framework also achieves a 64% enhancement in the fairness level between users compared to baseline rate maximizing frameworks. Finally, the weather conditions, e.g., rain, are observed to have a more significant effect than pointing errors and turbulence.

We design a self-decision goal-oriented multiple access scheme, where sensing agents observe a common event and individually decide to communicate the event's attributes to the monitoring agents, to satisfy a certain goal. Decisions are based on the usefulness of contents, which are generated under uniform, change- and semantics-aware content acquisition, as well as statistics and contents of other agents. We obtain optimal activation probabilities and threshold criteria for decision-making under all schemes, maximizing a grade of effectiveness metric. Combined with a semantics-aware acquisition scheme, the self-decision scheme offers, on average, 29.52% higher effectiveness, 25.13% fewer drop-offs, and 67.21% fewer transmissions.

The problem of identifying the channel with the highest capacity among several discrete memoryless channels (DMCs) is considered. The problem is cast as a pure-exploration multi-armed bandit problem, which follows the practical use of training sequences to sense the communication channel statistics. A capacity estimator is proposed and tight confidence bounds on the estimator error are derived. Based on this capacity estimator, a gap-elimination algorithm termed BestChanID is proposed, which is oblivious to the capacity-achieving input distribution and is guaranteed to output the DMC with the largest capacity, with a desired confidence. Furthermore, two additional algorithms NaiveChanSel and MedianChanEl, that output with certain confidence a DMC with capacity close to the maximal, are introduced. Each of those algorithms is beneficial in a different regime and can be used as a subroutine in BestChanID. The sample complexity of all algorithms is analyzed as a function of the desired confidence parameter, the number of channels, and the channels' input and output alphabet sizes. The cost of best channel identification is shown to scale quadratically with the alphabet size, and a fundamental lower bound for the required number of channel senses to identify the best channel with a certain confidence is derived.

We consider the problem of weakly-private information retrieval (WPIR) when data is encoded by a maximum distance separable code and stored across multiple servers. In WPIR, a user wishes to retrieve a piece of data from a set of servers without leaking too much information about which piece of data she is interested in. We study and provide the first WPIR protocols for this scenario and present results on their optimal trade-off between download rate and information leakage using the maximal leakage privacy metric.

We consider nonlinear eigenvalue problems to compute all eigenvalues in a bounded region on the complex plane. Based on domain decomposition and contour integrals, two robust and scalable parallel multi-step methods are proposed. The first method 1) uses the spectral indicator method to find eigenvalues and 2) calls a linear eigensolver to compute the associated eigenvectors. The second method 1) divides the region into subregions and uses the spectral indicator method to decide candidate regions that contain eigenvalues, 2) computes eigenvalues in each candidate subregion using Beyn's method; and 3) verifies each eigenvalue by substituting it back to the system and computes the smallest eigenvalue. Each step of the two methods is carried out in parallel. Both methods are robust, accurate, and does not require prior knowledge of the number and distribution of the eigenvalues in the region. Examples are presented to show the performance of the two methods.

Federated Learning (FL) is a decentralized machine-learning paradigm, in which a global server iteratively averages the model parameters of local users without accessing their data. User heterogeneity has imposed significant challenges to FL, which can incur drifted global models that are slow to converge. Knowledge Distillation has recently emerged to tackle this issue, by refining the server model using aggregated knowledge from heterogeneous users, other than directly averaging their model parameters. This approach, however, depends on a proxy dataset, making it impractical unless such a prerequisite is satisfied. Moreover, the ensemble knowledge is not fully utilized to guide local model learning, which may in turn affect the quality of the aggregated model. Inspired by the prior art, we propose a data-free knowledge distillation} approach to address heterogeneous FL, where the server learns a lightweight generator to ensemble user information in a data-free manner, which is then broadcasted to users, regulating local training using the learned knowledge as an inductive bias. Empirical studies powered by theoretical implications show that, our approach facilitates FL with better generalization performance using fewer communication rounds, compared with the state-of-the-art.

Approaches based on deep neural networks have achieved striking performance when testing data and training data share similar distribution, but can significantly fail otherwise. Therefore, eliminating the impact of distribution shifts between training and testing data is crucial for building performance-promising deep models. Conventional methods assume either the known heterogeneity of training data (e.g. domain labels) or the approximately equal capacities of different domains. In this paper, we consider a more challenging case where neither of the above assumptions holds. We propose to address this problem by removing the dependencies between features via learning weights for training samples, which helps deep models get rid of spurious correlations and, in turn, concentrate more on the true connection between discriminative features and labels. Extensive experiments clearly demonstrate the effectiveness of our method on multiple distribution generalization benchmarks compared with state-of-the-art counterparts. Through extensive experiments on distribution generalization benchmarks including PACS, VLCS, MNIST-M, and NICO, we show the effectiveness of our method compared with state-of-the-art counterparts.

Social relations are often used to improve recommendation quality when user-item interaction data is sparse in recommender systems. Most existing social recommendation models exploit pairwise relations to mine potential user preferences. However, real-life interactions among users are very complicated and user relations can be high-order. Hypergraph provides a natural way to model complex high-order relations, while its potentials for improving social recommendation are under-explored. In this paper, we fill this gap and propose a multi-channel hypergraph convolutional network to enhance social recommendation by leveraging high-order user relations. Technically, each channel in the network encodes a hypergraph that depicts a common high-order user relation pattern via hypergraph convolution. By aggregating the embeddings learned through multiple channels, we obtain comprehensive user representations to generate recommendation results. However, the aggregation operation might also obscure the inherent characteristics of different types of high-order connectivity information. To compensate for the aggregating loss, we innovatively integrate self-supervised learning into the training of the hypergraph convolutional network to regain the connectivity information with hierarchical mutual information maximization. The experimental results on multiple real-world datasets show that the proposed model outperforms the SOTA methods, and the ablation study verifies the effectiveness of the multi-channel setting and the self-supervised task. The implementation of our model is available via //github.com/Coder-Yu/RecQ.

A large number of real-world graphs or networks are inherently heterogeneous, involving a diversity of node types and relation types. Heterogeneous graph embedding is to embed rich structural and semantic information of a heterogeneous graph into low-dimensional node representations. Existing models usually define multiple metapaths in a heterogeneous graph to capture the composite relations and guide neighbor selection. However, these models either omit node content features, discard intermediate nodes along the metapath, or only consider one metapath. To address these three limitations, we propose a new model named Metapath Aggregated Graph Neural Network (MAGNN) to boost the final performance. Specifically, MAGNN employs three major components, i.e., the node content transformation to encapsulate input node attributes, the intra-metapath aggregation to incorporate intermediate semantic nodes, and the inter-metapath aggregation to combine messages from multiple metapaths. Extensive experiments on three real-world heterogeneous graph datasets for node classification, node clustering, and link prediction show that MAGNN achieves more accurate prediction results than state-of-the-art baselines.

Learning latent representations of nodes in graphs is an important and ubiquitous task with widespread applications such as link prediction, node classification, and graph visualization. Previous methods on graph representation learning mainly focus on static graphs, however, many real-world graphs are dynamic and evolve over time. In this paper, we present Dynamic Self-Attention Network (DySAT), a novel neural architecture that operates on dynamic graphs and learns node representations that capture both structural properties and temporal evolutionary patterns. Specifically, DySAT computes node representations by jointly employing self-attention layers along two dimensions: structural neighborhood and temporal dynamics. We conduct link prediction experiments on two classes of graphs: communication networks and bipartite rating networks. Our experimental results show that DySAT has a significant performance gain over several different state-of-the-art graph embedding baselines.

北京阿比特科技有限公司