亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Few-shot anomaly detection (AD) is an emerging sub-field of general AD, and tries to distinguish between normal and anomalous data using only few selected samples. While newly proposed few-shot AD methods do compare against pre-existing algorithms developed for the full-shot domain as baselines, they do not dedicatedly optimize them for the few-shot setting. It thus remains unclear if the performance of such pre-existing algorithms can be further improved. We address said question in this work. Specifically, we present a study on the AD/anomaly segmentation (AS) performance of PatchCore, the current state-of-the-art full-shot AD/AS algorithm, in both the few-shot and the many-shot settings. We hypothesize that further performance improvements can be realized by (I) optimizing its various hyperparameters, and by (II) transferring techniques known to improve few-shot supervised learning to the AD domain. Exhaustive experiments on the public VisA and MVTec AD datasets reveal that (I) significant performance improvements can be realized by optimizing hyperparameters such as the underlying feature extractor, and that (II) image-level augmentations can, but are not guaranteed, to improve performance. Based on these findings, we achieve a new state of the art in few-shot AD on VisA, further demonstrating the merit of adapting pre-existing AD/AS methods to the few-shot setting. Last, we identify the investigation of feature extractors with a strong inductive bias as a potential future research direction for (few-shot) AD/AS.

相關內容

小樣本學(xue)習(Few-Shot Learning,以下簡稱(cheng) FSL )用于(yu)解決當可用的(de)(de)(de)(de)數據量比較少時,如(ru)何提(ti)升神經(jing)(jing)網絡的(de)(de)(de)(de)性能。在 FSL 中,經(jing)(jing)常用到的(de)(de)(de)(de)一類方(fang)法被(bei)稱(cheng)為 Meta-learning。和(he)普(pu)通的(de)(de)(de)(de)神經(jing)(jing)網絡的(de)(de)(de)(de)訓(xun)練(lian)方(fang)法一樣,Meta-learning 也包含(han)訓(xun)練(lian)過程(cheng)和(he)測試過程(cheng),但是它的(de)(de)(de)(de)訓(xun)練(lian)過程(cheng)被(bei)稱(cheng)作 Meta-training 和(he) Meta-testing。

Until high-fidelity quantum computers with a large number of qubits become widely available, classical simulation remains a vital tool for algorithm design, tuning, and validation. We present a simulator for the Quantum Approximate Optimization Algorithm (QAOA). Our simulator is designed with the goal of reducing the computational cost of QAOA parameter optimization and supports both CPU and GPU execution. Our central observation is that the computational cost of both simulating the QAOA state and computing the QAOA objective to be optimized can be reduced by precomputing the diagonal Hamiltonian encoding the problem. We reduce the time for a typical QAOA parameter optimization by eleven times for $n = 26$ qubits compared to a state-of-the-art GPU quantum circuit simulator based on cuQuantum. Our simulator is available on GitHub: //github.com/jpmorganchase/QOKit

We propose an efficient distributed out-of-memory implementation of the Non-negative Matrix Factorization (NMF) algorithm for heterogeneous high-performance-computing (HPC) systems. The proposed implementation is based on prior work on NMFk, which can perform automatic model selection and extract latent variables and patterns from data. In this work, we extend NMFk by adding support for dense and sparse matrix operation on multi-node, multi-GPU systems. The resulting algorithm is optimized for out-of-memory (OOM) problems where the memory required to factorize a given matrix is greater than the available GPU memory. Memory complexity is reduced by batching/tiling strategies, and sparse and dense matrix operations are significantly accelerated with GPU cores (or tensor cores when available). Input/Output (I/O) latency associated with batch copies between host and device is hidden using CUDA streams to overlap data transfers and compute asynchronously, and latency associated with collective communications (both intra-node and inter-node) is reduced using optimized NVIDIA Collective Communication Library NCCL based communicators. Benchmark results show significant improvement, from 32X to 76x speedup, with the new implementation using GPUs over the CPU-based NMFk. Good weak scaling was demonstrated on up to 4096 multi-GPU cluster nodes with approximately 25,000 GPUs when decomposing a dense 340 Terabyte-size matrix and an 11 Exabyte-size sparse matrix of density 10e-6.

Visible-infrared person re-identification (VI-ReID) is a challenging task due to large cross-modality discrepancies and intra-class variations. Existing methods mainly focus on learning modality-shared representations by embedding different modalities into the same feature space. As a result, the learned feature emphasizes the common patterns across modalities while suppressing modality-specific and identity-aware information that is valuable for Re-ID. To address these issues, we propose a novel Modality Unifying Network (MUN) to explore a robust auxiliary modality for VI-ReID. First, the auxiliary modality is generated by combining the proposed cross-modality learner and intra-modality learner, which can dynamically model the modality-specific and modality-shared representations to alleviate both cross-modality and intra-modality variations. Second, by aligning identity centres across the three modalities, an identity alignment loss function is proposed to discover the discriminative feature representations. Third, a modality alignment loss is introduced to consistently reduce the distribution distance of visible and infrared images by modality prototype modeling. Extensive experiments on multiple public datasets demonstrate that the proposed method surpasses the current state-of-the-art methods by a significant margin.

Make-up temporal video grounding (MTVG) aims to localize the target video segment which is semantically related to a sentence describing a make-up activity, given a long video. Compared with the general video grounding task, MTVG focuses on meticulous actions and changes on the face. The make-up instruction step, usually involving detailed differences in products and facial areas, is more fine-grained than general activities (e.g, cooking activity and furniture assembly). Thus, existing general approaches cannot locate the target activity effectually. More specifically, existing proposal generation modules are not yet fully developed in providing semantic cues for the more fine-grained make-up semantic comprehension. To tackle this issue, we propose an effective proposal-based framework named Dual-Path Temporal Map Optimization Network (DPTMO) to capture fine-grained multimodal semantic details of make-up activities. DPTMO extracts both query-agnostic and query-guided features to construct two proposal sets and uses specific evaluation methods for the two sets. Different from the commonly used single structure in previous methods, our dual-path structure can mine more semantic information in make-up videos and distinguish fine-grained actions well. These two candidate sets represent the cross-modal makeup video-text similarity and multi-modal fusion relationship, complementing each other. Each set corresponds to its respective optimization perspective, and their joint prediction enhances the accuracy of video timestamp prediction. Comprehensive experiments on the YouMakeup dataset demonstrate our proposed dual structure excels in fine-grained semantic comprehension.

Domain adaptation of GANs is a problem of fine-tuning GAN models pretrained on a large dataset (e.g. StyleGAN) to a specific domain with few samples (e.g. painting faces, sketches, etc.). While there are many methods that tackle this problem in different ways, there are still many important questions that remain unanswered. In this paper, we provide a systematic and in-depth analysis of the domain adaptation problem of GANs, focusing on the StyleGAN model. We perform a detailed exploration of the most important parts of StyleGAN that are responsible for adapting the generator to a new domain depending on the similarity between the source and target domains. As a result of this study, we propose new efficient and lightweight parameterizations of StyleGAN for domain adaptation. Particularly, we show that there exist directions in StyleSpace (StyleDomain directions) that are sufficient for adapting to similar domains. For dissimilar domains, we propose Affine+ and AffineLight+ parameterizations that allows us to outperform existing baselines in few-shot adaptation while having significantly less training parameters. Finally, we examine StyleDomain directions and discover their many surprising properties that we apply for domain mixing and cross-domain image morphing. Source code can be found at //github.com/AIRI-Institute/StyleDomain.

Distributed stochastic gradient descent (SGD) with gradient compression has become a popular communication-efficient solution for accelerating distributed learning. One commonly used method for gradient compression is Top-K sparsification, which sparsifies the gradients by a fixed degree during model training. However, there has been a lack of an adaptive approach to adjust the sparsification degree to maximize the potential of the model's performance or training speed. This paper proposes a novel adaptive Top-K in SGD framework that enables an adaptive degree of sparsification for each gradient descent step to optimize the convergence performance by balancing the trade-off between communication cost and convergence error. Firstly, an upper bound of convergence error is derived for the adaptive sparsification scheme and the loss function. Secondly, an algorithm is designed to minimize the convergence error under the communication cost constraints. Finally, numerical results on the MNIST and CIFAR-10 datasets demonstrate that the proposed adaptive Top-K algorithm in SGD achieves a significantly better convergence rate compared to state-of-the-art methods, even after considering error compensation.

We propose employing a debiased-regularized, high-dimensional generalized method of moments (GMM) framework to perform inference on large-scale spatial panel networks. In particular, network structure with a flexible sparse deviation, which can be regarded either as latent or as misspecified from a predetermined adjacency matrix, is estimated using debiased machine learning approach. The theoretical analysis establishes the consistency and asymptotic normality of our proposed estimator, taking into account general temporal and spatial dependency inherent in the data-generating processes. The dimensionality allowance in presence of dependency is discussed. A primary contribution of our study is the development of uniform inference theory that enables hypothesis testing on the parameters of interest, including zero or non-zero elements in the network structure. Additionally, the asymptotic properties for the estimator are derived for both linear and nonlinear moments. Simulations demonstrate superior performance of our proposed approach. Lastly, we apply our methodology to investigate the spatial network effect of stock returns.

The existence of representative datasets is a prerequisite of many successful artificial intelligence and machine learning models. However, the subsequent application of these models often involves scenarios that are inadequately represented in the data used for training. The reasons for this are manifold and range from time and cost constraints to ethical considerations. As a consequence, the reliable use of these models, especially in safety-critical applications, is a huge challenge. Leveraging additional, already existing sources of knowledge is key to overcome the limitations of purely data-driven approaches, and eventually to increase the generalization capability of these models. Furthermore, predictions that conform with knowledge are crucial for making trustworthy and safe decisions even in underrepresented scenarios. This work provides an overview of existing techniques and methods in the literature that combine data-based models with existing knowledge. The identified approaches are structured according to the categories integration, extraction and conformity. Special attention is given to applications in the field of autonomous driving.

We extend this idea further to explicitly model the distribution-level relation of one example to all other examples in a 1-vs-N manner. We propose a novel approach named distribution propagation graph network (DPGN) for few-shot learning. It conveys both the distribution-level relations and instance-level relations in each few-shot learning task. To combine the distribution-level relations and instance-level relations for all examples, we construct a dual complete graph network which consists of a point graph and a distribution graph with each node standing for an example. Equipped with dual graph architecture, DPGN propagates label information from labeled examples to unlabeled examples within several update generations. In extensive experiments on few-shot learning benchmarks, DPGN outperforms state-of-the-art results by a large margin in 5% $\sim$ 12% under supervised settings and 7% $\sim$ 13% under semi-supervised settings.

It is important to detect anomalous inputs when deploying machine learning systems. The use of larger and more complex inputs in deep learning magnifies the difficulty of distinguishing between anomalous and in-distribution examples. At the same time, diverse image and text data are available in enormous quantities. We propose leveraging these data to improve deep anomaly detection by training anomaly detectors against an auxiliary dataset of outliers, an approach we call Outlier Exposure (OE). This enables anomaly detectors to generalize and detect unseen anomalies. In extensive experiments on natural language processing and small- and large-scale vision tasks, we find that Outlier Exposure significantly improves detection performance. We also observe that cutting-edge generative models trained on CIFAR-10 may assign higher likelihoods to SVHN images than to CIFAR-10 images; we use OE to mitigate this issue. We also analyze the flexibility and robustness of Outlier Exposure, and identify characteristics of the auxiliary dataset that improve performance.

北京阿比特科技有限公司