In this article we develop a feasible version of the assumption-lean tests in Liu et al. 20 that can falsify an analyst's justification for the validity of a reported nominal $(1 - \alpha)$ Wald confidence interval (CI) centered at a double machine learning (DML) estimator for any member of the class of doubly robust (DR) functionals studied by Rotnitzky et al. 21. The class of DR functionals is broad and of central importance in economics and biostatistics. It strictly includes both (i) the class of mean-square continuous functionals that can be written as an expectation of an affine functional of a conditional expectation studied by Chernozhukov et al. 22 and the class of functionals studied by Robins et al. 08. The present state-of-the-art estimators for DR functionals $\psi$ are DML estimators $\hat{\psi}_{1}$. The bias of $\hat{\psi}_{1}$ depends on the product of the rates at which two nuisance functions $b$ and $p$ are estimated. Most commonly an analyst justifies the validity of her Wald CIs by proving that, under her complexity-reducing assumptions, the Cauchy-Schwarz (CS) upper bound for the bias of $\hat{\psi}_{1}$ is $o (n^{- 1 / 2})$. Thus if the hypothesis $H_{0}$: the CS upper bound is $o (n^{- 1 / 2})$ is rejected by our test, we will have falsified the analyst's justification for the validity of her Wald CIs. In this work, we exhibit a valid assumption-lean falsification test of $H_{0}$, without relying on complexity-reducing assumptions on $b, p$, or their estimates $\hat{b}, \hat{p}$. Simulation experiments are conducted to demonstrate how the proposed assumption-lean test can be used in practice. An unavoidable limitation of our methodology is that no assumption-lean test of $H_{0}$, including ours, can be a consistent test. Thus failure of our test to reject is not meaningful evidence in favor of $H_{0}$.
Robustness to adversarial attacks is typically evaluated with adversarial accuracy. While essential, this metric does not capture all aspects of robustness and in particular leaves out the question of how many perturbations can be found for each point. In this work, we introduce an alternative approach, adversarial sparsity, which quantifies how difficult it is to find a successful perturbation given both an input point and a constraint on the direction of the perturbation. We show that sparsity provides valuable insight into neural networks in multiple ways: for instance, it illustrates important differences between current state-of-the-art robust models them that accuracy analysis does not, and suggests approaches for improving their robustness. When applying broken defenses effective against weak attacks but not strong ones, sparsity can discriminate between the totally ineffective and the partially effective defenses. Finally, with sparsity we can measure increases in robustness that do not affect accuracy: we show for example that data augmentation can by itself increase adversarial robustness, without using adversarial training.
In this paper, we settle a conjecture due to Sturmfels and Uhler concerning generation of the prime ideal of the variety associated to the Gaussian graphical model of any cycle graph. Our methods are general and applicable to a large class of ideals with radical initial ideals.
Activity progress prediction aims to estimate what percentage of an activity has been completed. Currently this is done with machine learning approaches, trained and evaluated on complicated and realistic video datasets. The videos in these datasets vary drastically in length and appearance. And some of the activities have unanticipated developments, making activity progression difficult to estimate. In this work, we examine the results obtained by existing progress prediction methods on these datasets. We find that current progress prediction methods seem not to extract useful visual information for the progress prediction task. Therefore, these methods fail to exceed simple frame-counting baselines. We design a precisely controlled dataset for activity progress prediction and on this synthetic dataset we show that the considered methods can make use of the visual information, when this directly relates to the progress prediction. We conclude that the progress prediction task is ill-posed on the currently used real-world datasets. Moreover, to fairly measure activity progression we advise to consider a, simple but effective, frame-counting baseline.
Here, we show that the InfoNCE objective is equivalent to the ELBO in a new class of probabilistic generative model, the recognition parameterised model (RPM). When we learn the optimal prior, the RPM ELBO becomes equal to the mutual information (MI; up to a constant), establishing a connection to pre-existing self-supervised learning methods such as InfoNCE. However, practical InfoNCE methods do not use the MI as an objective; the MI is invariant to arbitrary invertible transformations, so using an MI objective can lead to highly entangled representations (Tschannen et al., 2019). Instead, the actual InfoNCE objective is a simplified lower bound on the MI which is loose even in the infinite sample limit. Thus, an objective that works (i.e. the actual InfoNCE objective) appears to be motivated as a loose bound on an objective that does not work (i.e. the true MI which gives arbitrarily entangled representations). We give an alternative motivation for the actual InfoNCE objective. In particular, we show that in the infinite sample limit, and for a particular choice of prior, the actual InfoNCE objective is equal to the ELBO (up to a constant); and the ELBO is equal to the marginal likelihood with a deterministic recognition model. Thus, we argue that our VAE perspective gives a better motivation for InfoNCE than MI, as the actual InfoNCE objective is only loosely bounded by the MI, but is equal to the ELBO/marginal likelihood (up to a constant).
With a rapidly increasing amount and diversity of remote sensing (RS) data sources, there is a strong need for multi-view learning modeling. This is a complex task when considering the differences in resolution, magnitude, and noise of RS data. The typical approach for merging multiple RS sources has been input-level fusion, but other - more advanced - fusion strategies may outperform this traditional approach. This work assesses different fusion strategies for crop classification in the CropHarvest dataset. The fusion methods proposed in this work outperform models based on individual views and previous fusion methods. We do not find one single fusion method that consistently outperforms all other approaches. Instead, we present a comparison of multi-view fusion methods for three different datasets and show that, depending on the test region, different methods obtain the best performance. Despite this, we suggest a preliminary criterion for the selection of fusion methods.
We consider the problem of estimating the roughness of the volatility in a stochastic volatility model that arises as a nonlinear function of fractional Brownian motion with drift. To this end, we introduce a new estimator that measures the so-called roughness exponent of a continuous trajectory, based on discrete observations of its antiderivative. We provide conditions on the underlying trajectory under which our estimator converges in a strictly pathwise sense. Then we verify that these conditions are satisfied by almost every sample path of fractional Brownian motion (with drift). As a consequence, we obtain strong consistency theorems in the context of a large class of rough volatility models. Numerical simulations show that our estimation procedure performs well after passing to a scale-invariant modification of our estimator.
About ten years ago, a paper proposed the first integer linear programming formulation for the constrained two-dimensional guillotine cutting problem (with unlimited cutting stages). Since, six other formulations followed, five of them in the last two years. This spike of interest gave no opportunity for a comprehensive comparison between the formulations. We review each formulation and compare their empirical results over instance datasets of the literature. We adapt most formulations to allow for piece rotation. The possibility of adaptation was already predicted but not realized by the prior work. The results show the dominance of pseudo-polynomial formulations until the point instances become intractable by them, while more compact formulations keep achieving good primal solutions. Our study also reveals a small but consistent advantage of the Gurobi solver over the CPLEX solver in our context; that the choice of solver hardly benefits one formulation over another; and a mistake in the generation of the T instances, which should have the same optima with or without guillotine cuts. Our study also proposes hybridising the most recent formulation with a prior formulation for a restricted version of the problem. The hybridisations show a reduction of about 20% of the branch-and-bound time thanks to the symmetries broken by the hybridisation.
This article re-examines Lawvere's abstract, category-theoretic proof of the fixed-point theorem whose contrapositive is a `universal' diagonal argument. The main result is that the necessary axioms for both the fixed-point theorem and the diagonal argument can be stripped back further, to a semantic analogue of a weak substructural logic lacking weakening or exchange.
Traffic interactions between merging and highway vehicles are a major topic of research, yielding many empirical studies and models of driver behaviour. Most of these studies on merging use naturalistic data. Although this provides insight into human gap acceptance and traffic flow effects, it obscures the operational inputs of interacting drivers. Besides that, researchers have no control over the vehicle kinematics (i.e., positions and velocities) at the start of the interactions. Therefore the relationship between initial kinematics and the outcome of the interaction is difficult to investigate. To address these gaps, we conducted an experiment in a coupled driving simulator with a simplified, top-down view, merging scenario with two vehicles. We found that kinematics can explain the outcome (i.e., which driver merges first) and the duration of the merging conflict. Furthermore, our results show that drivers use key decision moments combined with constant acceleration inputs (intermittent piecewise-constant control) during merging. This indicates that they do not continuously optimize their expected utility. Therefore, these results advocate the development of interaction models based on intermittent piecewise-constant control. We hope our work can contribute to this development and to the fundamental knowledge of interactive driver behaviour.
This paper does not describe a working system. Instead, it presents a single idea about representation which allows advances made by several different groups to be combined into an imaginary system called GLOM. The advances include transformers, neural fields, contrastive representation learning, distillation and capsules. GLOM answers the question: How can a neural network with a fixed architecture parse an image into a part-whole hierarchy which has a different structure for each image? The idea is simply to use islands of identical vectors to represent the nodes in the parse tree. If GLOM can be made to work, it should significantly improve the interpretability of the representations produced by transformer-like systems when applied to vision or language