亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Offline reinforcement learning (RL) can be used to improve future performance by leveraging historical data. There exist many different algorithms for offline RL, and it is well recognized that these algorithms, and their hyperparameter settings, can lead to decision policies with substantially differing performance. This prompts the need for pipelines that allow practitioners to systematically perform algorithm-hyperparameter selection for their setting. Critically, in most real-world settings, this pipeline must only involve the use of historical data. Inspired by statistical model selection methods for supervised learning, we introduce a task- and method-agnostic pipeline for automatically training, comparing, selecting, and deploying the best policy when the provided dataset is limited in size. In particular, our work highlights the importance of performing multiple data splits to produce more reliable algorithm-hyperparameter selection. While this is a common approach in supervised learning, to our knowledge, this has not been discussed in detail in the offline RL setting. We show it can have substantial impacts when the dataset is small. Compared to alternate approaches, our proposed pipeline outputs higher-performing deployed policies from a broad range of offline policy learning algorithms and across various simulation domains in healthcare, education, and robotics. This work contributes toward the development of a general-purpose meta-algorithm for automatic algorithm-hyperparameter selection for offline RL.

相關內容

Sample efficiency and exploration remain major challenges in online reinforcement learning (RL). A powerful approach that can be applied to address these issues is the inclusion of offline data, such as prior trajectories from a human expert or a sub-optimal exploration policy. Previous methods have relied on extensive modifications and additional complexity to ensure the effective use of this data. Instead, we ask: can we simply apply existing off-policy methods to leverage offline data when learning online? In this work, we demonstrate that the answer is yes; however, a set of minimal but important changes to existing off-policy RL algorithms are required to achieve reliable performance. We extensively ablate these design choices, demonstrating the key factors that most affect performance, and arrive at a set of recommendations that practitioners can readily apply, whether their data comprise a small number of expert demonstrations or large volumes of sub-optimal trajectories. We see that correct application of these simple recommendations can provide a $\mathbf{2.5\times}$ improvement over existing approaches across a diverse set of competitive benchmarks, with no additional computational overhead.

A compelling use case of offline reinforcement learning (RL) is to obtain a policy initialization from existing datasets, which allows efficient fine-tuning with limited amounts of active online interaction. However, several existing offline RL methods tend to exhibit poor online fine-tuning performance. On the other hand, online RL methods can learn effectively through online interaction, but struggle to incorporate offline data, which can make them very slow in settings where exploration is challenging or pre-training is necessary. In this paper, we devise an approach for learning an effective initialization from offline data that also enables fast online fine-tuning capabilities. Our approach, calibrated Q-learning (Cal-QL) accomplishes this by learning a conservative value function initialization that underestimates the value of the learned policy from offline data, while also being calibrated, in the sense that the learned Q-values are at a reasonable scale. We refer to this property as calibration, and define it formally as providing a lower bound on the true value function of the learned policy and an upper bound on the value of some other (suboptimal) reference policy, which may simply be the behavior policy. We show that offline RL algorithms that learn such calibrated value functions lead to effective online fine-tuning, enabling us to take the benefits of offline initializations in online fine-tuning. In practice, Cal-QL can be implemented on top of existing conservative methods for offline RL within a one-line code change. Empirically, Cal-QL outperforms state-of-the-art methods on 10/11 fine-tuning benchmark tasks that we study in this paper.

Reinforcement learning has shown great potential in solving complex tasks when large amounts of data can be generated with little effort. In robotics, one approach to generate training data builds on simulations based on dynamics models derived from first principles. However, for tasks that, for instance, involve complex soft robots, devising such models is substantially more challenging. Being able to train effectively in increasingly complicated scenarios with reinforcement learning enables to take advantage of complex systems such as soft robots. Here, we leverage the imbalance in complexity of the dynamics to learn more sample-efficiently. We (i) abstract the task into distinct components, (ii) off-load the simple dynamics parts into the simulation, and (iii) multiply these virtual parts to generate more data in hindsight. Our new method, Hindsight States (HiS), uses this data and selects the most useful transitions for training. It can be used with an arbitrary off-policy algorithm. We validate our method on several challenging simulated tasks and demonstrate that it improves learning both alone and when combined with an existing hindsight algorithm, Hindsight Experience Replay (HER). Finally, we evaluate HiS on a physical system and show that it boosts performance on a complex table tennis task with a muscular robot. Videos and code of the experiments can be found on webdav.tuebingen.mpg.de/his/.

Training deep reinforcement learning (DRL) models usually requires high computation costs. Therefore, compressing DRL models possesses immense potential for training acceleration and model deployment. However, existing methods that generate small models mainly adopt the knowledge distillation-based approach by iteratively training a dense network. As a result, the training process still demands massive computing resources. Indeed, sparse training from scratch in DRL has not been well explored and is particularly challenging due to non-stationarity in bootstrap training. In this work, we propose a novel sparse DRL training framework, "the Rigged Reinforcement Learning Lottery" (RLx2), which builds upon gradient-based topology evolution and is capable of training a sparse DRL model based entirely on a sparse network. Specifically, RLx2 introduces a novel multi-step TD target mechanism with a dynamic-capacity replay buffer to achieve robust value learning and efficient topology exploration in sparse models. It also reaches state-of-the-art sparse training performance in several tasks, showing 7.5\times-20\times model compression with less than 3% performance degradation and up to 20\times and 50\times FLOPs reduction for training and inference, respectively.

While Reinforcement Learning (RL) achieves tremendous success in sequential decision-making problems of many domains, it still faces key challenges of data inefficiency and the lack of interpretability. Interestingly, many researchers have leveraged insights from the causality literature recently, bringing forth flourishing works to unify the merits of causality and address well the challenges from RL. As such, it is of great necessity and significance to collate these Causal Reinforcement Learning (CRL) works, offer a review of CRL methods, and investigate the potential functionality from causality toward RL. In particular, we divide existing CRL approaches into two categories according to whether their causality-based information is given in advance or not. We further analyze each category in terms of the formalization of different models, ranging from the Markov Decision Process (MDP), Partially Observed Markov Decision Process (POMDP), Multi-Arm Bandits (MAB), and Dynamic Treatment Regime (DTR). Moreover, we summarize the evaluation matrices and open sources while we discuss emerging applications, along with promising prospects for the future development of CRL.

The past few years have seen rapid progress in combining reinforcement learning (RL) with deep learning. Various breakthroughs ranging from games to robotics have spurred the interest in designing sophisticated RL algorithms and systems. However, the prevailing workflow in RL is to learn tabula rasa, which may incur computational inefficiency. This precludes continuous deployment of RL algorithms and potentially excludes researchers without large-scale computing resources. In many other areas of machine learning, the pretraining paradigm has shown to be effective in acquiring transferable knowledge, which can be utilized for a variety of downstream tasks. Recently, we saw a surge of interest in Pretraining for Deep RL with promising results. However, much of the research has been based on different experimental settings. Due to the nature of RL, pretraining in this field is faced with unique challenges and hence requires new design principles. In this survey, we seek to systematically review existing works in pretraining for deep reinforcement learning, provide a taxonomy of these methods, discuss each sub-field, and bring attention to open problems and future directions.

Graph mining tasks arise from many different application domains, ranging from social networks, transportation, E-commerce, etc., which have been receiving great attention from the theoretical and algorithm design communities in recent years, and there has been some pioneering work using the hotly researched reinforcement learning (RL) techniques to address graph data mining tasks. However, these graph mining algorithms and RL models are dispersed in different research areas, which makes it hard to compare different algorithms with each other. In this survey, we provide a comprehensive overview of RL models and graph mining and generalize these algorithms to Graph Reinforcement Learning (GRL) as a unified formulation. We further discuss the applications of GRL methods across various domains and summarize the method description, open-source codes, and benchmark datasets of GRL methods. Finally, we propose possible important directions and challenges to be solved in the future. This is the latest work on a comprehensive survey of GRL literature, and this work provides a global view for researchers as well as a learning resource for researchers outside the domain. In addition, we create an online open-source for both interested researchers who want to enter this rapidly developing domain and experts who would like to compare GRL methods.

The rapid changes in the finance industry due to the increasing amount of data have revolutionized the techniques on data processing and data analysis and brought new theoretical and computational challenges. In contrast to classical stochastic control theory and other analytical approaches for solving financial decision-making problems that heavily reply on model assumptions, new developments from reinforcement learning (RL) are able to make full use of the large amount of financial data with fewer model assumptions and to improve decisions in complex financial environments. This survey paper aims to review the recent developments and use of RL approaches in finance. We give an introduction to Markov decision processes, which is the setting for many of the commonly used RL approaches. Various algorithms are then introduced with a focus on value and policy based methods that do not require any model assumptions. Connections are made with neural networks to extend the framework to encompass deep RL algorithms. Our survey concludes by discussing the application of these RL algorithms in a variety of decision-making problems in finance, including optimal execution, portfolio optimization, option pricing and hedging, market making, smart order routing, and robo-advising.

Recommender systems have been widely applied in different real-life scenarios to help us find useful information. Recently, Reinforcement Learning (RL) based recommender systems have become an emerging research topic. It often surpasses traditional recommendation models even most deep learning-based methods, owing to its interactive nature and autonomous learning ability. Nevertheless, there are various challenges of RL when applying in recommender systems. Toward this end, we firstly provide a thorough overview, comparisons, and summarization of RL approaches for five typical recommendation scenarios, following three main categories of RL: value-function, policy search, and Actor-Critic. Then, we systematically analyze the challenges and relevant solutions on the basis of existing literature. Finally, under discussion for open issues of RL and its limitations of recommendation, we highlight some potential research directions in this field.

Deep Learning has revolutionized the fields of computer vision, natural language understanding, speech recognition, information retrieval and more. However, with the progressive improvements in deep learning models, their number of parameters, latency, resources required to train, etc. have all have increased significantly. Consequently, it has become important to pay attention to these footprint metrics of a model as well, not just its quality. We present and motivate the problem of efficiency in deep learning, followed by a thorough survey of the five core areas of model efficiency (spanning modeling techniques, infrastructure, and hardware) and the seminal work there. We also present an experiment-based guide along with code, for practitioners to optimize their model training and deployment. We believe this is the first comprehensive survey in the efficient deep learning space that covers the landscape of model efficiency from modeling techniques to hardware support. Our hope is that this survey would provide the reader with the mental model and the necessary understanding of the field to apply generic efficiency techniques to immediately get significant improvements, and also equip them with ideas for further research and experimentation to achieve additional gains.

北京阿比特科技有限公司