CNNs exhibit inherent equivariance to image translation, leading to efficient parameter and data usage, faster learning, and improved robustness. The concept of translation equivariant networks has been successfully extended to rotation transformation using group convolution for discrete rotation groups and harmonic functions for the continuous rotation group encompassing $360^\circ$. We explore the compatibility of the SA mechanism with full rotation equivariance, in contrast to previous studies that focused on discrete rotation. We introduce the Harmformer, a harmonic transformer with a convolutional stem that achieves equivariance for both translation and continuous rotation. Accompanied by an end-to-end equivariance proof, the Harmformer not only outperforms previous equivariant transformers, but also demonstrates inherent stability under any continuous rotation, even without seeing rotated samples during training.
Recent advancements in robot learning have used imitation learning with large models and extensive demonstrations to develop effective policies. However, these models are often limited by the quantity, quality, and diversity of demonstrations. This paper explores improving offline-trained imitation learning models through online interactions with the environment. We introduce Policy Decorator, which uses a model-agnostic residual policy to refine large imitation learning models during online interactions. By implementing controlled exploration strategies, Policy Decorator enables stable, sample-efficient online learning. Our evaluation spans eight tasks across two benchmarks-ManiSkill and Adroit-and involves two state-of-the-art imitation learning models (Behavior Transformer and Diffusion Policy). The results show Policy Decorator effectively improves the offline-trained policies and preserves the smooth motion of imitation learning models, avoiding the erratic behaviors of pure RL policies. See our project page (//policydecorator.github.io) for videos.
Understanding sensor data can be challenging for non-experts because of the complexity and unique semantic meanings of sensor modalities. This calls for intuitive and effective methods to present sensor information. However, creating intuitive sensor data visualizations presents three key challenges: the variability of sensor readings, gaps in domain comprehension, and the dynamic nature of sensor data. To address these issues, we develop Vivar, a novel AR system that integrates multi-modal sensor data and presents 3D volumetric content for visualization. In particular, we introduce a cross-modal embedding approach that maps sensor data into a pre-trained visual embedding space through barycentric interpolation. This allows for accurate and continuous integration of multi-modal sensor information. Vivar also incorporates sensor-aware AR scene generation using foundation models and 3D Gaussian Splatting (3DGS) without requiring domain expertise. In addition, Vivar leverages latent reuse and caching strategies to accelerate 2D and AR content generation. Our extensive experiments demonstrate that our system achieves 11$\times$ latency reduction without compromising quality. A user study involving over 485 participants, including domain experts, demonstrates Vivar's effectiveness in accuracy, consistency, and real-world applicability, paving the way for more intuitive sensor data visualization.
To derive valuable insights from statistics, machine learning applications frequently analyze substantial amounts of data. In this work, we address the problem of designing efficient secure techniques to probe large datasets which allow a scientist to conduct large-scale medical studies over specific attributes of patients' records, while maintaining the privacy of his model. We introduce a set of composable homomorphic operations and show how to combine private functions evaluation with private thresholds via approximate fully homomorphic encryption. This allows us to design a new system named TETRIS, which solves the real-world use case of private functional exploration of large databases, where the statistical criteria remain private to the server owning the patients' records. Our experiments show that TETRIS achieves practical performance over a large dataset of patients even for the evaluation of elaborate statements composed of linear and nonlinear functions. It is possible to extract private insights from a database of hundreds of thousands of patient records within only a few minutes on a single thread, with an amortized time per database entry smaller than 2ms.
View materialization, index selection, and plan caching are well-known techniques for optimization of query processing in database systems. The essence of these tasks is to select and save a subset of the most useful candidates (views/indexes/plans) for reuse within given space/time budget constraints. In this paper, based on the View Selection Problem, we propose a unified view on these problems. We identify the root causes of the complexity of these selection problems and provide a detailed analysis of techniques to cope with them. Our survey provides a modern classification of selection algorithms known in the literature, including the latest ones based on Machine Learning. We provide a ground for the reuse of the selection techniques between different optimization scenarios and highlight challenges and promising directions in the field.
Model inference systems are essential for implementing end-to-end data analytics pipelines that deliver the benefits of machine learning models to users. Existing cloud-based model inference systems are costly, not easy to scale, and must be trusted in handling the models and user request data. Serverless computing presents a new opportunity, as it provides elasticity and fine-grained pricing. Our goal is to design a serverless model inference system that protects models and user request data from untrusted cloud providers. It offers high performance and low cost, while requiring no intrusive changes to the current serverless platforms. To realize our goal, we leverage trusted hardware. We identify and address three challenges in using trusted hardware for serverless model inference. These challenges arise from the high-level abstraction of serverless computing, the performance overhead of trusted hardware, and the characteristics of model inference workloads. We present SeSeMI, a secure, efficient, and cost-effective serverless model inference system. It adds three novel features non-intrusively to the existing serverless infrastructure and nothing else.The first feature is a key service that establishes secure channels between the user and the serverless instances, which also provides access control to models and users' data. The second is an enclave runtime that allows one enclave to process multiple concurrent requests. The final feature is a model packer that allows multiple models to be executed by one serverless instance. We build SeSeMI on top of Apache OpenWhisk, and conduct extensive experiments with three popular machine learning models. The results show that SeSeMI achieves low latency and low cost at scale for realistic workloads.
Acquiring, processing, and visualizing geospatial data requires significant computing resources, especially for large spatio-temporal domains. This challenge hinders the rapid discovery of predictive features, which is essential for advancing geospatial modeling. To address this, we developed Similarity Search (Sims), a no-code web tool that allows users to visualize, compare, cluster, and perform similarity search over defined regions of interest using Google Earth Engine as a backend. Sims is designed to complement existing modeling tools by focusing on feature exploration rather than model creation. We demonstrate the utility of Sims through a case study analyzing simulated maize yield data in Rwanda, where we evaluate how different combinations of soil, weather, and agronomic features affect the clustering of yield response zones. Sims is open source and available at //github.com/microsoft/Sims
Dataset distillation offers an efficient way to reduce memory and computational costs by optimizing a smaller dataset with performance comparable to the full-scale original. However, for large datasets and complex deep networks (e.g., ImageNet-1K with ResNet-101), the extensive optimization space limits performance, reducing its practicality. Recent approaches employ pre-trained diffusion models to generate informative images directly, avoiding pixel-level optimization and achieving notable results. However, these methods often face challenges due to distribution shifts between pre-trained models and target datasets, along with the need for multiple distillation steps across varying settings. To address these issues, we propose a novel framework orthogonal to existing diffusion-based distillation methods, leveraging diffusion models for selection rather than generation. Our method starts by predicting noise generated by the diffusion model based on input images and text prompts (with or without label text), then calculates the corresponding loss for each pair. With the loss differences, we identify distinctive regions of the original images. Additionally, we perform intra-class clustering and ranking on selected patches to maintain diversity constraints. This streamlined framework enables a single-step distillation process, and extensive experiments demonstrate that our approach outperforms state-of-the-art methods across various metrics.
Semi-supervised learning on class-imbalanced data, although a realistic problem, has been under studied. While existing semi-supervised learning (SSL) methods are known to perform poorly on minority classes, we find that they still generate high precision pseudo-labels on minority classes. By exploiting this property, in this work, we propose Class-Rebalancing Self-Training (CReST), a simple yet effective framework to improve existing SSL methods on class-imbalanced data. CReST iteratively retrains a baseline SSL model with a labeled set expanded by adding pseudo-labeled samples from an unlabeled set, where pseudo-labeled samples from minority classes are selected more frequently according to an estimated class distribution. We also propose a progressive distribution alignment to adaptively adjust the rebalancing strength dubbed CReST+. We show that CReST and CReST+ improve state-of-the-art SSL algorithms on various class-imbalanced datasets and consistently outperform other popular rebalancing methods.
Conventionally, spatiotemporal modeling network and its complexity are the two most concentrated research topics in video action recognition. Existing state-of-the-art methods have achieved excellent accuracy regardless of the complexity meanwhile efficient spatiotemporal modeling solutions are slightly inferior in performance. In this paper, we attempt to acquire both efficiency and effectiveness simultaneously. First of all, besides traditionally treating H x W x T video frames as space-time signal (viewing from the Height-Width spatial plane), we propose to also model video from the other two Height-Time and Width-Time planes, to capture the dynamics of video thoroughly. Secondly, our model is designed based on 2D CNN backbones and model complexity is well kept in mind by design. Specifically, we introduce a novel multi-view fusion (MVF) module to exploit video dynamics using separable convolution for efficiency. It is a plug-and-play module and can be inserted into off-the-shelf 2D CNNs to form a simple yet effective model called MVFNet. Moreover, MVFNet can be thought of as a generalized video modeling framework and it can specialize to be existing methods such as C2D, SlowOnly, and TSM under different settings. Extensive experiments are conducted on popular benchmarks (i.e., Something-Something V1 & V2, Kinetics, UCF-101, and HMDB-51) to show its superiority. The proposed MVFNet can achieve state-of-the-art performance with 2D CNN's complexity.
The cross-domain recommendation technique is an effective way of alleviating the data sparsity in recommender systems by leveraging the knowledge from relevant domains. Transfer learning is a class of algorithms underlying these techniques. In this paper, we propose a novel transfer learning approach for cross-domain recommendation by using neural networks as the base model. We assume that hidden layers in two base networks are connected by cross mappings, leading to the collaborative cross networks (CoNet). CoNet enables dual knowledge transfer across domains by introducing cross connections from one base network to another and vice versa. CoNet is achieved in multi-layer feedforward networks by adding dual connections and joint loss functions, which can be trained efficiently by back-propagation. The proposed model is evaluated on two real-world datasets and it outperforms baseline models by relative improvements of 3.56\% in MRR and 8.94\% in NDCG, respectively.