亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

When applying transfer learning for medical image analysis, downstream tasks often have significant gaps with the pre-training tasks. Previous methods mainly focus on improving the transferabilities of the pre-trained models to bridge the gaps. In fact, model fine-tuning can also play a very important role in tackling this problem. A conventional fine-tuning method is updating all deep neural networks (DNNs) layers by a single learning rate (LR), which ignores the unique transferabilities of different layers. In this work, we explore the behaviors of different layers in the fine-tuning stage. More precisely, we first hypothesize that lower-level layers are more domain-specific while higher-level layers are more task-specific, which is verified by a simple bi-directional fine-tuning scheme. It is harder for the pre-trained specific layers to transfer to new tasks than general layers. On this basis, to make different layers better co-adapt to the downstream tasks according to their transferabilities, a meta-learning-based LR learner, namely MetaLR, is proposed to assign LRs for each layer automatically. Extensive experiments on various medical applications (i.e., POCUS, BUSI, Chest X-ray, and LiTS) well confirm our hypothesis and show the superior performance of the proposed methods to previous state-of-the-art fine-tuning methods.

相關內容

Event cameras respond to scene dynamics and offer advantages to estimate motion. Following recent image-based deep-learning achievements, optical flow estimation methods for event cameras have rushed to combine those image-based methods with event data. However, it requires several adaptations (data conversion, loss function, etc.) as they have very different properties. We develop a principled method to extend the Contrast Maximization framework to estimate optical flow from events alone. We investigate key elements: how to design the objective function to prevent overfitting, how to warp events to deal better with occlusions, and how to improve convergence with multi-scale raw events. With these key elements, our method ranks first among unsupervised methods on the MVSEC benchmark, and is competitive on the DSEC benchmark. Moreover, our method allows us to expose the issues of the ground truth flow in those benchmarks, and produces remarkable results when it is transferred to unsupervised learning settings. Our code is available at //github.com/tub-rip/event_based_optical_flow

Contrastive Vision-Language Pre-training, known as CLIP, has provided a new paradigm for learning visual representations using large-scale image-text pairs. It shows impressive performance on downstream tasks by zero-shot knowledge transfer. To further enhance CLIP's adaption capability, existing methods proposed to fine-tune additional learnable modules, which significantly improves the few-shot performance but introduces extra training time and computational resources. In this paper, we propose a training-free adaption method for CLIP to conduct few-shot classification, termed as Tip-Adapter, which not only inherits the training-free advantage of zero-shot CLIP but also performs comparably to those training-required approaches. Tip-Adapter constructs the adapter via a key-value cache model from the few-shot training set, and updates the prior knowledge encoded in CLIP by feature retrieval. On top of that, the performance of Tip-Adapter can be further boosted to be state-of-the-art on ImageNet by fine-tuning the cache model for 10$\times$ fewer epochs than existing methods, which is both effective and efficient. We conduct extensive experiments of few-shot classification on 11 datasets to demonstrate the superiority of our proposed methods. Code is released at //github.com/gaopengcuhk/Tip-Adapter.

Visual representation learning is the key of solving various vision problems. Relying on the seminal grid structure priors, convolutional neural networks (CNNs) have been the de facto standard architectures of most deep vision models. For instance, classical semantic segmentation methods often adopt a fully-convolutional network (FCN) with an encoder-decoder architecture. The encoder progressively reduces the spatial resolution and learns more abstract visual concepts with larger receptive fields. Since context modeling is critical for segmentation, the latest efforts have been focused on increasing the receptive field, through either dilated (i.e., atrous) convolutions or inserting attention modules. However, the FCN-based architecture remains unchanged. In this paper, we aim to provide an alternative perspective by treating visual representation learning generally as a sequence-to-sequence prediction task. Specifically, we deploy a pure Transformer to encode an image as a sequence of patches, without local convolution and resolution reduction. With the global context modeled in every layer of the Transformer, stronger visual representation can be learned for better tackling vision tasks. In particular, our segmentation model, termed as SEgmentation TRansformer (SETR), excels on ADE20K (50.28% mIoU, the first position in the test leaderboard on the day of submission), Pascal Context (55.83% mIoU) and reaches competitive results on Cityscapes. Further, we formulate a family of Hierarchical Local-Global (HLG) Transformers characterized by local attention within windows and global-attention across windows in a hierarchical and pyramidal architecture. Extensive experiments show that our method achieves appealing performance on a variety of visual recognition tasks (e.g., image classification, object detection and instance segmentation and semantic segmentation).

Feature selection is an important process in machine learning. It builds an interpretable and robust model by selecting the features that contribute the most to the prediction target. However, most mature feature selection algorithms, including supervised and semi-supervised, fail to fully exploit the complex potential structure between features. We believe that these structures are very important for the feature selection process, especially when labels are lacking and data is noisy. To this end, we innovatively introduce a deep learning-based self-supervised mechanism into feature selection problems, namely batch-Attention-based Self-supervision Feature Selection(A-SFS). Firstly, a multi-task self-supervised autoencoder is designed to uncover the hidden structure among features with the support of two pretext tasks. Guided by the integrated information from the multi-self-supervised learning model, a batch-attention mechanism is designed to generate feature weights according to batch-based feature selection patterns to alleviate the impacts introduced by a handful of noisy data. This method is compared to 14 major strong benchmarks, including LightGBM and XGBoost. Experimental results show that A-SFS achieves the highest accuracy in most datasets. Furthermore, this design significantly reduces the reliance on labels, with only 1/10 labeled data needed to achieve the same performance as those state of art baselines. Results show that A-SFS is also most robust to the noisy and missing data.

There is recent interest in using model hubs, a collection of pre-trained models, in computer vision tasks. To utilize the model hub, we first select a source model and then adapt the model for the target to compensate for differences. While there is yet limited research on model selection and adaption for computer vision tasks, this holds even more for the field of renewable power. At the same time, it is a crucial challenge to provide forecasts for the increasing demand for power forecasts based on weather features from a numerical weather prediction. We close these gaps by conducting the first thorough experiment for model selection and adaptation for transfer learning in renewable power forecast, adopting recent results from the field of computer vision on 667 wind and photovoltaic parks. To the best of our knowledge, this makes it the most extensive study for transfer learning in renewable power forecasts reducing the computational effort and improving the forecast error. Therefore, we adopt source models based on target data from different seasons and limit the amount of training data. As an extension of the current state of the art, we utilize a Bayesian linear regression for forecasting the response based on features extracted from a neural network. This approach outperforms the baseline with only seven days of training data. We further show how combining multiple models through ensembles can significantly improve the model selection and adaptation approach.

We study the problem of few-shot graph classification across domains with nonequivalent feature spaces by introducing three new cross-domain benchmarks constructed from publicly available datasets. We also propose an attention-based graph encoder that uses three congruent views of graphs, one contextual and two topological views, to learn representations of task-specific information for fast adaptation, and task-agnostic information for knowledge transfer. We run exhaustive experiments to evaluate the performance of contrastive and meta-learning strategies. We show that when coupled with metric-based meta-learning frameworks, the proposed encoder achieves the best average meta-test classification accuracy across all benchmarks. The source code and data will be released here: //github.com/kavehhassani/metagrl

Graph neural networks (GNNs) is widely used to learn a powerful representation of graph-structured data. Recent work demonstrates that transferring knowledge from self-supervised tasks to downstream tasks could further improve graph representation. However, there is an inherent gap between self-supervised tasks and downstream tasks in terms of optimization objective and training data. Conventional pre-training methods may be not effective enough on knowledge transfer since they do not make any adaptation for downstream tasks. To solve such problems, we propose a new transfer learning paradigm on GNNs which could effectively leverage self-supervised tasks as auxiliary tasks to help the target task. Our methods would adaptively select and combine different auxiliary tasks with the target task in the fine-tuning stage. We design an adaptive auxiliary loss weighting model to learn the weights of auxiliary tasks by quantifying the consistency between auxiliary tasks and the target task. In addition, we learn the weighting model through meta-learning. Our methods can be applied to various transfer learning approaches, it performs well not only in multi-task learning but also in pre-training and fine-tuning. Comprehensive experiments on multiple downstream tasks demonstrate that the proposed methods can effectively combine auxiliary tasks with the target task and significantly improve the performance compared to state-of-the-art methods.

While recent studies on semi-supervised learning have shown remarkable progress in leveraging both labeled and unlabeled data, most of them presume a basic setting of the model is randomly initialized. In this work, we consider semi-supervised learning and transfer learning jointly, leading to a more practical and competitive paradigm that can utilize both powerful pre-trained models from source domain as well as labeled/unlabeled data in the target domain. To better exploit the value of both pre-trained weights and unlabeled target examples, we introduce adaptive consistency regularization that consists of two complementary components: Adaptive Knowledge Consistency (AKC) on the examples between the source and target model, and Adaptive Representation Consistency (ARC) on the target model between labeled and unlabeled examples. Examples involved in the consistency regularization are adaptively selected according to their potential contributions to the target task. We conduct extensive experiments on several popular benchmarks including CUB-200-2011, MIT Indoor-67, MURA, by fine-tuning the ImageNet pre-trained ResNet-50 model. Results show that our proposed adaptive consistency regularization outperforms state-of-the-art semi-supervised learning techniques such as Pseudo Label, Mean Teacher, and MixMatch. Moreover, our algorithm is orthogonal to existing methods and thus able to gain additional improvements on top of MixMatch and FixMatch. Our code is available at //github.com/SHI-Labs/Semi-Supervised-Transfer-Learning.

Few-shot learning aims to learn novel categories from very few samples given some base categories with sufficient training samples. The main challenge of this task is the novel categories are prone to dominated by color, texture, shape of the object or background context (namely specificity), which are distinct for the given few training samples but not common for the corresponding categories (see Figure 1). Fortunately, we find that transferring information of the correlated based categories can help learn the novel concepts and thus avoid the novel concept being dominated by the specificity. Besides, incorporating semantic correlations among different categories can effectively regularize this information transfer. In this work, we represent the semantic correlations in the form of structured knowledge graph and integrate this graph into deep neural networks to promote few-shot learning by a novel Knowledge Graph Transfer Network (KGTN). Specifically, by initializing each node with the classifier weight of the corresponding category, a propagation mechanism is learned to adaptively propagate node message through the graph to explore node interaction and transfer classifier information of the base categories to those of the novel ones. Extensive experiments on the ImageNet dataset show significant performance improvement compared with current leading competitors. Furthermore, we construct an ImageNet-6K dataset that covers larger scale categories, i.e, 6,000 categories, and experiments on this dataset further demonstrate the effectiveness of our proposed model.

Graph Neural Networks (GNNs), which generalize deep neural networks to graph-structured data, have drawn considerable attention and achieved state-of-the-art performance in numerous graph related tasks. However, existing GNN models mainly focus on designing graph convolution operations. The graph pooling (or downsampling) operations, that play an important role in learning hierarchical representations, are usually overlooked. In this paper, we propose a novel graph pooling operator, called Hierarchical Graph Pooling with Structure Learning (HGP-SL), which can be integrated into various graph neural network architectures. HGP-SL incorporates graph pooling and structure learning into a unified module to generate hierarchical representations of graphs. More specifically, the graph pooling operation adaptively selects a subset of nodes to form an induced subgraph for the subsequent layers. To preserve the integrity of graph's topological information, we further introduce a structure learning mechanism to learn a refined graph structure for the pooled graph at each layer. By combining HGP-SL operator with graph neural networks, we perform graph level representation learning with focus on graph classification task. Experimental results on six widely used benchmarks demonstrate the effectiveness of our proposed model.

北京阿比特科技有限公司