Autonomous robotic systems, such as quadrotors, are susceptible to actuator faults, and for the safe operation of such systems, timely detection and isolation of these faults is essential. Neural networks can be used for verification of actuator performance via online actuator fault detection with high accuracy. In this paper, we develop a novel model-free fault detection and isolation (FDI) framework for quadrotor systems using long-short-term memory (LSTM) neural network architecture. The proposed framework only uses system output data and the commanded control input and requires no knowledge of the system model. Utilizing the symmetry in quadrotor dynamics, we train the FDI for fault in just one of the motors (e.g., motor $\# 2$), and the trained FDI can predict faults in any of the motors. This reduction in search space enables us to design an FDI for partial fault as well as complete fault scenarios. Numerical experiments illustrate that the proposed NN-FDI correctly verifies the actuator performance and identifies partial as well as complete faults with over $90\%$ prediction accuracy. We also illustrate that model-free NN-FDI performs at par with model-based FDI, and is robust to model uncertainties as well as distribution shifts in input data.
Data augmentation techniques, such as simple image transformations and combinations, are highly effective at improving the generalization of computer vision models, especially when training data is limited. However, such techniques are fundamentally incompatible with differentially private learning approaches, due to the latter's built-in assumption that each training image's contribution to the learned model is bounded. In this paper, we investigate why naive applications of multi-sample data augmentation techniques, such as mixup, fail to achieve good performance and propose two novel data augmentation techniques specifically designed for the constraints of differentially private learning. Our first technique, DP-Mix_Self, achieves SoTA classification performance across a range of datasets and settings by performing mixup on self-augmented data. Our second technique, DP-Mix_Diff, further improves performance by incorporating synthetic data from a pre-trained diffusion model into the mixup process. We open-source the code at //github.com/wenxuan-Bao/DP-Mix.
Accurate latency computation is essential for the Internet of Things (IoT) since the connected devices generate a vast amount of data that is processed on cloud infrastructure. However, the cloud is not an optimal solution. To overcome this issue, fog computing is used to enable processing at the edge while still allowing communication with the cloud. Many applications rely on fog computing, including traffic management. In this paper, an Intelligent Traffic Congestion Mitigation System (ITCMS) is proposed to address traffic congestion in heavily populated smart cities. The proposed system is implemented using fog computing and tested in a crowded city. Its performance is evaluated based on multiple metrics, such as traffic efficiency, energy savings, reduced latency, average traffic flow rate, and waiting time. The obtained results are compared with similar techniques that tackle the same issue. The results obtained indicate that the execution time of the simulation is 4,538 seconds, and the delay in the application loop is 49.67 seconds. The paper addresses various issues, including CPU usage, heap memory usage, throughput, and the total average delay, which are essential for evaluating the performance of the ITCMS. Our system model is also compared with other models to assess its performance. A comparison is made using two parameters, namely throughput and the total average delay, between the ITCMS, IOV (Internet of Vehicle), and STL (Seasonal-Trend Decomposition Procedure based on LOESS). Consequently, the results confirm that the proposed system outperforms the others in terms of higher accuracy, lower latency, and improved traffic efficiency.
Surgical robotics is a rising field in medical technology and advanced robotics. Robot assisted surgery, or robotic surgery, allows surgeons to perform complicated surgical tasks with more precision, automation, and flexibility than is possible for traditional surgical approaches. The main type of robot assisted surgery is minimally invasive surgery, which could be automated and result in a faster healing time for the patient. The surgical robot we are particularly interested in is the da Vinci surgical system, which is developed and manufactured by Intuitive Surgical. In the current iteration of the system, the endoscopic camera arm on the da Vinci robot has to be manually controlled and calibrated by the surgeon during a surgical task, which interrupts the flow of the operation. The main goal of this capstone project is to automate the motion of the camera arm using a probabilistic model based on surgeon eye gaze data and da Vinci robot kinematic data.
Grasping objects with limited or no prior knowledge about them is a highly relevant skill in assistive robotics. Still, in this general setting, it has remained an open problem, especially when it comes to only partial observability and versatile grasping with multi-fingered hands. We present a novel, fast, and high fidelity deep learning pipeline consisting of a shape completion module that is based on a single depth image, and followed by a grasp predictor that is based on the predicted object shape. The shape completion network is based on VQDIF and predicts spatial occupancy values at arbitrary query points. As grasp predictor, we use our two-stage architecture that first generates hand poses using an autoregressive model and then regresses finger joint configurations per pose. Critical factors turn out to be sufficient data realism and augmentation, as well as special attention to difficult cases during training. Experiments on a physical robot platform demonstrate successful grasping of a wide range of household objects based on a depth image from a single viewpoint. The whole pipeline is fast, taking only about 1 s for completing the object's shape (0.7 s) and generating 1000 grasps (0.3 s).
Generative retrieval, which is a new advanced paradigm for document retrieval, has recently attracted research interests, since it encodes all documents into the model and directly generates the retrieved documents. However, its power is still underutilized since it heavily relies on the "preprocessed" document identifiers (docids), thus limiting its retrieval performance and ability to retrieve new documents. In this paper, we propose a novel fully end-to-end retrieval paradigm. It can not only end-to-end learn the best docids for existing and new documents automatically via a semantic indexing module, but also perform end-to-end document retrieval via an encoder-decoder-based generative model, namely Auto Search Indexer (ASI). Besides, we design a reparameterization mechanism to combine the above two modules into a joint optimization framework. Extensive experimental results demonstrate the superiority of our model over advanced baselines on both public and industrial datasets and also verify the ability to deal with new documents.
Contrastive loss has been increasingly used in learning representations from multiple modalities. In the limit, the nature of the contrastive loss encourages modalities to exactly match each other in the latent space. Yet it remains an open question how the modality alignment affects the downstream task performance. In this paper, based on an information-theoretic argument, we first prove that exact modality alignment is sub-optimal in general for downstream prediction tasks. Hence we advocate that the key of better performance lies in meaningful latent modality structures instead of perfect modality alignment. To this end, we propose three general approaches to construct latent modality structures. Specifically, we design 1) a deep feature separation loss for intra-modality regularization; 2) a Brownian-bridge loss for inter-modality regularization; and 3) a geometric consistency loss for both intra- and inter-modality regularization. Extensive experiments are conducted on two popular multi-modal representation learning frameworks: the CLIP-based two-tower model and the ALBEF-based fusion model. We test our model on a variety of tasks including zero/few-shot image classification, image-text retrieval, visual question answering, visual reasoning, and visual entailment. Our method achieves consistent improvements over existing methods, demonstrating the effectiveness and generalizability of our proposed approach on latent modality structure regularization.
Link prediction on knowledge graphs (KGs) is a key research topic. Previous work mainly focused on binary relations, paying less attention to higher-arity relations although they are ubiquitous in real-world KGs. This paper considers link prediction upon n-ary relational facts and proposes a graph-based approach to this task. The key to our approach is to represent the n-ary structure of a fact as a small heterogeneous graph, and model this graph with edge-biased fully-connected attention. The fully-connected attention captures universal inter-vertex interactions, while with edge-aware attentive biases to particularly encode the graph structure and its heterogeneity. In this fashion, our approach fully models global and local dependencies in each n-ary fact, and hence can more effectively capture associations therein. Extensive evaluation verifies the effectiveness and superiority of our approach. It performs substantially and consistently better than current state-of-the-art across a variety of n-ary relational benchmarks. Our code is publicly available.
Most object recognition approaches predominantly focus on learning discriminative visual patterns while overlooking the holistic object structure. Though important, structure modeling usually requires significant manual annotations and therefore is labor-intensive. In this paper, we propose to "look into object" (explicitly yet intrinsically model the object structure) through incorporating self-supervisions into the traditional framework. We show the recognition backbone can be substantially enhanced for more robust representation learning, without any cost of extra annotation and inference speed. Specifically, we first propose an object-extent learning module for localizing the object according to the visual patterns shared among the instances in the same category. We then design a spatial context learning module for modeling the internal structures of the object, through predicting the relative positions within the extent. These two modules can be easily plugged into any backbone networks during training and detached at inference time. Extensive experiments show that our look-into-object approach (LIO) achieves large performance gain on a number of benchmarks, including generic object recognition (ImageNet) and fine-grained object recognition tasks (CUB, Cars, Aircraft). We also show that this learning paradigm is highly generalizable to other tasks such as object detection and segmentation (MS COCO). Project page: //github.com/JDAI-CV/LIO.
In Multi-Label Text Classification (MLTC), one sample can belong to more than one class. It is observed that most MLTC tasks, there are dependencies or correlations among labels. Existing methods tend to ignore the relationship among labels. In this paper, a graph attention network-based model is proposed to capture the attentive dependency structure among the labels. The graph attention network uses a feature matrix and a correlation matrix to capture and explore the crucial dependencies between the labels and generate classifiers for the task. The generated classifiers are applied to sentence feature vectors obtained from the text feature extraction network (BiLSTM) to enable end-to-end training. Attention allows the system to assign different weights to neighbor nodes per label, thus allowing it to learn the dependencies among labels implicitly. The results of the proposed model are validated on five real-world MLTC datasets. The proposed model achieves similar or better performance compared to the previous state-of-the-art models.
While existing machine learning models have achieved great success for sentiment classification, they typically do not explicitly capture sentiment-oriented word interaction, which can lead to poor results for fine-grained analysis at the snippet level (a phrase or sentence). Factorization Machine provides a possible approach to learning element-wise interaction for recommender systems, but they are not directly applicable to our task due to the inability to model contexts and word sequences. In this work, we develop two Position-aware Factorization Machines which consider word interaction, context and position information. Such information is jointly encoded in a set of sentiment-oriented word interaction vectors. Compared to traditional word embeddings, SWI vectors explicitly capture sentiment-oriented word interaction and simplify the parameter learning. Experimental results show that while they have comparable performance with state-of-the-art methods for document-level classification, they benefit the snippet/sentence-level sentiment analysis.