There have been recent calls for research on the human side of software engineering and its impact on various factors such as productivity, developer happiness and project success. An analysis of which challenges in software engineering teams are most frequent is still missing. We aim to provide a starting point for a theory about relevant human challenges and their causes in software engineering. We establish a reusable set of challenges and start out by investigating the effect of team virtualization. Virtual teams often use digital communication and consist of members with different nationalities. We designed a survey instrument and asked respondents to assess the frequency and criticality of a set of challenges, separated in context "within teams" as well as "between teams and clients", compiled from previous empiric work, blog posts and pilot survey feedback. For the team challenges, we asked if mitigation measures were already in place. Respondents were also asked to provide information about their team setup. The survey also measured Schwartz human values. Finally, respondents were asked if there were additional challenges at their workplace. We report on the results obtained from 192 respondents. We present a set of challenges that takes the survey feedback into account and introduce two categories of challenges; "interpersonal" and "intrapersonal". We found no evidence for links between human values and challenges. We found some significant links between the number of distinct nationalities in a team and certain challenges, with less frequent and critical challenges occurring if 2-3 different nationalities were present compared to a team having members of just one nationality or more than three. A higher degree of virtualization seems to increase the frequency of some human challenges.
The human footprint is having a unique set of ridges unmatched by any other human being, and therefore it can be used in different identity documents for example birth certificate, Indian biometric identification system AADHAR card, driving license, PAN card, and passport. There are many instances of the crime scene where an accused must walk around and left the footwear impressions as well as barefoot prints and therefore, it is very crucial to recovering the footprints from identifying the criminals. Footprint-based biometric is a considerably newer technique for personal identification. Fingerprints, retina, iris and face recognition are the methods most useful for attendance record of the person. This time the world is facing the problem of global terrorism. It is challenging to identify the terrorist because they are living as regular as the citizens do. Their soft target includes the industries of special interests such as defence, silicon and nanotechnology chip manufacturing units, pharmacy sectors. They pretend themselves as religious persons, so temples and other holy places, even in markets is in their targets. These are the places where one can obtain their footprints quickly. The gait itself is sufficient to predict the behaviour of the suspects. The present research is driven to identify the usefulness of footprint and gait as an alternative to personal identification.
Human action recognition and analysis have great demand and important application significance in video surveillance, video retrieval, and human-computer interaction. The task of human action quality evaluation requires the intelligent system to automatically and objectively evaluate the action completed by the human. The action quality assessment model can reduce the human and material resources spent in action evaluation and reduce subjectivity. In this paper, we provide a comprehensive survey of existing papers on video-based action quality assessment. Different from human action recognition, the application scenario of action quality assessment is relatively narrow. Most of the existing work focuses on sports and medical care. We first introduce the definition and challenges of human action quality assessment. Then we present the existing datasets and evaluation metrics. In addition, we summarized the methods of sports and medical care according to the model categories and publishing institutions according to the characteristics of the two fields. At the end, combined with recent work, the promising development direction in action quality assessment is discussed.
The widespread dependency on open-source software makes it a fruitful target for malicious actors, as demonstrated by recurring attacks. The complexity of today's open-source supply chains results in a significant attack surface, giving attackers numerous opportunities to reach the goal of injecting malicious code into open-source artifacts that is then downloaded and executed by victims. This work proposes a general taxonomy for attacks on open-source supply chains, independent of specific programming languages or ecosystems, and covering all supply chain stages from code contributions to package distribution. Taking the form of an attack tree, it covers 107 unique vectors, linked to 94 real-world incidents, and mapped to 33 mitigating safeguards. User surveys conducted with 17 domain experts and 134 software developers positively validated the correctness, comprehensiveness and comprehensibility of the taxonomy, as well as its suitability for various use-cases. Survey participants also assessed the utility and costs of the identified safeguards, and whether they are used.
Recent developments in Artificial Intelligence (AI) have fueled the emergence of human-AI collaboration, a setting where AI is a coequal partner. Especially in clinical decision-making, it has the potential to improve treatment quality by assisting overworked medical professionals. Even though research has started to investigate the utilization of AI for clinical decision-making, its potential benefits do not imply its adoption by medical professionals. While several studies have started to analyze adoption criteria from a technical perspective, research providing a human-centered perspective with a focus on AI's potential for becoming a coequal team member in the decision-making process remains limited. Therefore, in this work, we identify factors for the adoption of human-AI collaboration by conducting a series of semi-structured interviews with experts in the healthcare domain. We identify six relevant adoption factors and highlight existing tensions between them and effective human-AI collaboration.
Forensic firearms identification, the determination by a trained firearms examiner as to whether or not bullets or cartridges came from a common weapon, has long been a mainstay in the criminal courts. Reliability of forensic firearms identification has been challenged in the general scientific community, and, in response, several studies have been carried out aimed at showing that firearms examination is accurate, that is, has low error rates. Less studied has been the question of consistency, of. whether two examinations of the same bullets or cartridge cases come to the same conclusion, carried out by an examiner on separate occasions -- intrarater reliability or repeatability -- or by two examiners -- interrater reliability or reproducibility. One important study, described in a 2020 Report by the Ames Laboratory-USDOE to the Federal Bureau of Investigation, went beyond considerations of accuracy to investigate firearms examination repeatability and reproducibility. The Report's conclusions were paradoxical. The observed agreement of examiners with themselves or with other examiners appears mediocre. However, the study concluded repeatability and reproducibility are satisfactory, on grounds that the observed agreement exceeds a quantity called the expected agreement. We find that appropriately employing expected agreement as it was intended does not suggest satisfactory repeatability and reproducibility, but the opposite.
With the advent of open source software, a veritable treasure trove of previously proprietary software development data was made available. This opened the field of empirical software engineering research to anyone in academia. Data that is mined from software projects, however, requires extensive processing and needs to be handled with utmost care to ensure valid conclusions. Since the software development practices and tools have changed over two decades, we aim to understand the state-of-the-art research workflows and to highlight potential challenges. We employ a systematic literature review by sampling over one thousand papers from leading conferences and by analyzing the 286 most relevant papers from the perspective of data workflows, methodologies, reproducibility, and tools. We found that an important part of the research workflow involving dataset selection was particularly problematic, which raises questions about the generality of the results in existing literature. Furthermore, we found a considerable number of papers provide little or no reproducibility instructions -- a substantial deficiency for a data-intensive field. In fact, 33% of papers provide no information on how their data was retrieved. Based on these findings, we propose ways to address these shortcomings via existing tools and also provide recommendations to improve research workflows and the reproducibility of research.
Context: Forgetting is defined as a gradual process of losing information. Even though there are many studies demonstrating the effect of forgetting in software development, to the best of our knowledge, no study explores the impact of forgetting in software development using a controlled experiment approach. Objective: We would like to provide insights on the impact of forgetting in software development projects. We want to examine whether the recency & frequency of interaction impact forgetting in software development. Methods: We will conduct an experiment that examines the impact of forgetting in software development. Participants will first do an initial task. According to their initial task performance, they will be assigned to either the experiment or the control group. The experiment group will then do two additional tasks to enhance their exposure to the code. Both groups will then do a final task to see if additional exposure to the code benefits the experiment group's performance in the final task. Finally, we will conduct a survey and a recall task with the same participants to collect data about their perceptions of forgetting and quantify their memory performance, respectively.
Detection and recognition of text in natural images are two main problems in the field of computer vision that have a wide variety of applications in analysis of sports videos, autonomous driving, industrial automation, to name a few. They face common challenging problems that are factors in how text is represented and affected by several environmental conditions. The current state-of-the-art scene text detection and/or recognition methods have exploited the witnessed advancement in deep learning architectures and reported a superior accuracy on benchmark datasets when tackling multi-resolution and multi-oriented text. However, there are still several remaining challenges affecting text in the wild images that cause existing methods to underperform due to there models are not able to generalize to unseen data and the insufficient labeled data. Thus, unlike previous surveys in this field, the objectives of this survey are as follows: first, offering the reader not only a review on the recent advancement in scene text detection and recognition, but also presenting the results of conducting extensive experiments using a unified evaluation framework that assesses pre-trained models of the selected methods on challenging cases, and applies the same evaluation criteria on these techniques. Second, identifying several existing challenges for detecting or recognizing text in the wild images, namely, in-plane-rotation, multi-oriented and multi-resolution text, perspective distortion, illumination reflection, partial occlusion, complex fonts, and special characters. Finally, the paper also presents insight into the potential research directions in this field to address some of the mentioned challenges that are still encountering scene text detection and recognition techniques.
Reinforcement learning is one of the core components in designing an artificial intelligent system emphasizing real-time response. Reinforcement learning influences the system to take actions within an arbitrary environment either having previous knowledge about the environment model or not. In this paper, we present a comprehensive study on Reinforcement Learning focusing on various dimensions including challenges, the recent development of different state-of-the-art techniques, and future directions. The fundamental objective of this paper is to provide a framework for the presentation of available methods of reinforcement learning that is informative enough and simple to follow for the new researchers and academics in this domain considering the latest concerns. First, we illustrated the core techniques of reinforcement learning in an easily understandable and comparable way. Finally, we analyzed and depicted the recent developments in reinforcement learning approaches. My analysis pointed out that most of the models focused on tuning policy values rather than tuning other things in a particular state of reasoning.
Transfer learning aims at improving the performance of target learners on target domains by transferring the knowledge contained in different but related source domains. In this way, the dependence on a large number of target domain data can be reduced for constructing target learners. Due to the wide application prospects, transfer learning has become a popular and promising area in machine learning. Although there are already some valuable and impressive surveys on transfer learning, these surveys introduce approaches in a relatively isolated way and lack the recent advances in transfer learning. As the rapid expansion of the transfer learning area, it is both necessary and challenging to comprehensively review the relevant studies. This survey attempts to connect and systematize the existing transfer learning researches, as well as to summarize and interpret the mechanisms and the strategies in a comprehensive way, which may help readers have a better understanding of the current research status and ideas. Different from previous surveys, this survey paper reviews over forty representative transfer learning approaches from the perspectives of data and model. The applications of transfer learning are also briefly introduced. In order to show the performance of different transfer learning models, twenty representative transfer learning models are used for experiments. The models are performed on three different datasets, i.e., Amazon Reviews, Reuters-21578, and Office-31. And the experimental results demonstrate the importance of selecting appropriate transfer learning models for different applications in practice.