亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Many model-based reinforcement learning (RL) algorithms can be viewed as having two phases that are iteratively implemented: a learning phase where the model is approximately learned and a planning phase where the learned model is used to derive a policy. In the case of standard MDPs, the learning problem can be solved using either value iteration or policy iteration. However, in the case of zero-sum Markov games, there is no efficient policy iteration algorithm; e.g., it has been shown in Hansen et al. (2013) that one has to solve Omega(1/(1-alpha)) MDPs, where alpha is the discount factor, to implement the only known convergent version of policy iteration. Another algorithm for Markov zero-sum games, called naive policy iteration, is easy to implement but is only provably convergent under very restrictive assumptions. Prior attempts to fix naive policy iteration algorithm have several limitations. Here, we show that a simple variant of naive policy iteration for games converges, and converges exponentially fast. The only addition we propose to naive policy iteration is the use of lookahead in the policy improvement phase. This is appealing because lookahead is anyway often used in RL for games. We further show that lookahead can be implemented efficiently in linear Markov games, which are the counterpart of the linear MDPs and have been the subject of much attention recently. We then consider multi-agent reinforcement learning which uses our algorithm in the planning phases, and provide sample and time complexity bounds for such an algorithm.

相關內容

The problem of continual learning in the domain of reinforcement learning, often called non-stationary reinforcement learning, has been identified as an important challenge to the application of reinforcement learning. We prove a worst-case complexity result, which we believe captures this challenge: Modifying the probabilities or the reward of a single state-action pair in a reinforcement learning problem requires an amount of time almost as large as the number of states in order to keep the value function up to date, unless the strong exponential time hypothesis (SETH) is false; SETH is a widely accepted strengthening of the P $\neq$ NP conjecture. Recall that the number of states in current applications of reinforcement learning is typically astronomical. In contrast, we show that just $\textit{adding}$ a new state-action pair is considerably easier to implement.

The coupling of deep reinforcement learning to numerical flow control problems has recently received a considerable attention, leading to groundbreaking results and opening new perspectives for the domain. Due to the usually high computational cost of fluid dynamics solvers, the use of parallel environments during the learning process represents an essential ingredient to attain efficient control in a reasonable time. Yet, most of the deep reinforcement learning literature for flow control relies on on-policy algorithms, for which the massively parallel transition collection may break theoretical assumptions and lead to suboptimal control models. To overcome this issue, we propose a parallelism pattern relying on partial-trajectory buffers terminated by a return bootstrapping step, allowing a flexible use of parallel environments while preserving the on-policiness of the updates. This approach is illustrated on a CPU-intensive continuous flow control problem from the literature.

In the intrinsically motivated skills acquisition problem, the agent is set in an environment without any pre-defined goals and needs to acquire an open-ended repertoire of skills. To do so the agent needs to be autotelic (deriving from the Greek auto (self) and telos (end goal)): it needs to generate goals and learn to achieve them following its own intrinsic motivation rather than external supervision. Autotelic agents have so far been considered in isolation. But many applications of open-ended learning entail groups of agents. Multi-agent environments pose an additional challenge for autotelic agents: to discover and master goals that require cooperation agents must pursue them simultaneously, but they have low chances of doing so if they sample them independently. In this work, we propose a new learning paradigm for modeling such settings, the Decentralized Intrinsically Motivated Skills Acquisition Problem (Dec-IMSAP), and employ it to solve cooperative navigation tasks. First, we show that agents setting their goals independently fail to master the full diversity of goals. Then, we show that a sufficient condition for achieving this is to ensure that a group aligns its goals, i.e., the agents pursue the same cooperative goal. Our empirical analysis shows that alignment enables specialization, an efficient strategy for cooperation. Finally, we introduce the Goal-coordination game, a fully-decentralized emergent communication algorithm, where goal alignment emerges from the maximization of individual rewards in multi-goal cooperative environments and show that it is able to reach equal performance to a centralized training baseline that guarantees aligned goals. To our knowledge, this is the first contribution addressing the problem of intrinsically motivated multi-agent goal exploration in a decentralized training paradigm.

We study optimality for the safety-constrained Markov decision process which is the underlying framework for safe reinforcement learning. Specifically, we consider a constrained Markov decision process (with finite states and finite actions) where the goal of the decision maker is to reach a target set while avoiding an unsafe set(s) with certain probabilistic guarantees. Therefore the underlying Markov chain for any control policy will be multichain since by definition there exists a target set and an unsafe set. The decision maker also has to be optimal (with respect to a cost function) while navigating to the target set. This gives rise to a multi-objective optimization problem. We highlight the fact that Bellman's principle of optimality may not hold for constrained Markov decision problems with an underlying multichain structure (as shown by the counterexample due to Haviv. We resolve the counterexample by formulating the aforementioned multi-objective optimization problem as a zero-sum game and thereafter construct an asynchronous value iteration scheme for the Lagrangian (similar to Shapley's algorithm). Finally, we consider the reinforcement learning problem for the same and construct a modified $Q$-learning algorithm for learning the Lagrangian from data. We also provide a lower bound on the number of iterations required for learning the Lagrangian and corresponding error bounds.

We study the regret of reinforcement learning from offline data generated by a fixed behavior policy in an infinite-horizon discounted Markov decision process (MDP). While existing analyses of common approaches, such as fitted $Q$-iteration (FQI), suggest a $O(1/\sqrt{n})$ convergence for regret, empirical behavior exhibits \emph{much} faster convergence. In this paper, we present a finer regret analysis that exactly characterizes this phenomenon by providing fast rates for the regret convergence. First, we show that given any estimate for the optimal quality function $Q^*$, the regret of the policy it defines converges at a rate given by the exponentiation of the $Q^*$-estimate's pointwise convergence rate, thus speeding it up. The level of exponentiation depends on the level of noise in the \emph{decision-making} problem, rather than the estimation problem. We establish such noise levels for linear and tabular MDPs as examples. Second, we provide new analyses of FQI and Bellman residual minimization to establish the correct pointwise convergence guarantees. As specific cases, our results imply $O(1/n)$ regret rates in linear cases and $\exp(-\Omega(n))$ regret rates in tabular cases. We extend our findings to general function approximation by extending our results to regret guarantees based on $L_p$-convergence rates for estimating $Q^*$ rather than pointwise rates, where $L_2$ guarantees for nonparametric $Q^*$-estimation can be ensured under mild conditions.

We introduce DeepNash, an autonomous agent capable of learning to play the imperfect information game Stratego from scratch, up to a human expert level. Stratego is one of the few iconic board games that Artificial Intelligence (AI) has not yet mastered. This popular game has an enormous game tree on the order of $10^{535}$ nodes, i.e., $10^{175}$ times larger than that of Go. It has the additional complexity of requiring decision-making under imperfect information, similar to Texas hold'em poker, which has a significantly smaller game tree (on the order of $10^{164}$ nodes). Decisions in Stratego are made over a large number of discrete actions with no obvious link between action and outcome. Episodes are long, with often hundreds of moves before a player wins, and situations in Stratego can not easily be broken down into manageably-sized sub-problems as in poker. For these reasons, Stratego has been a grand challenge for the field of AI for decades, and existing AI methods barely reach an amateur level of play. DeepNash uses a game-theoretic, model-free deep reinforcement learning method, without search, that learns to master Stratego via self-play. The Regularised Nash Dynamics (R-NaD) algorithm, a key component of DeepNash, converges to an approximate Nash equilibrium, instead of 'cycling' around it, by directly modifying the underlying multi-agent learning dynamics. DeepNash beats existing state-of-the-art AI methods in Stratego and achieved a yearly (2022) and all-time top-3 rank on the Gravon games platform, competing with human expert players.

Data processing and analytics are fundamental and pervasive. Algorithms play a vital role in data processing and analytics where many algorithm designs have incorporated heuristics and general rules from human knowledge and experience to improve their effectiveness. Recently, reinforcement learning, deep reinforcement learning (DRL) in particular, is increasingly explored and exploited in many areas because it can learn better strategies in complicated environments it is interacting with than statically designed algorithms. Motivated by this trend, we provide a comprehensive review of recent works focusing on utilizing DRL to improve data processing and analytics. First, we present an introduction to key concepts, theories, and methods in DRL. Next, we discuss DRL deployment on database systems, facilitating data processing and analytics in various aspects, including data organization, scheduling, tuning, and indexing. Then, we survey the application of DRL in data processing and analytics, ranging from data preparation, natural language processing to healthcare, fintech, etc. Finally, we discuss important open challenges and future research directions of using DRL in data processing and analytics.

The rapid changes in the finance industry due to the increasing amount of data have revolutionized the techniques on data processing and data analysis and brought new theoretical and computational challenges. In contrast to classical stochastic control theory and other analytical approaches for solving financial decision-making problems that heavily reply on model assumptions, new developments from reinforcement learning (RL) are able to make full use of the large amount of financial data with fewer model assumptions and to improve decisions in complex financial environments. This survey paper aims to review the recent developments and use of RL approaches in finance. We give an introduction to Markov decision processes, which is the setting for many of the commonly used RL approaches. Various algorithms are then introduced with a focus on value and policy based methods that do not require any model assumptions. Connections are made with neural networks to extend the framework to encompass deep RL algorithms. Our survey concludes by discussing the application of these RL algorithms in a variety of decision-making problems in finance, including optimal execution, portfolio optimization, option pricing and hedging, market making, smart order routing, and robo-advising.

This paper surveys the field of transfer learning in the problem setting of Reinforcement Learning (RL). RL has been the key solution to sequential decision-making problems. Along with the fast advance of RL in various domains. including robotics and game-playing, transfer learning arises as an important technique to assist RL by leveraging and transferring external expertise to boost the learning process. In this survey, we review the central issues of transfer learning in the RL domain, providing a systematic categorization of its state-of-the-art techniques. We analyze their goals, methodologies, applications, and the RL frameworks under which these transfer learning techniques would be approachable. We discuss the relationship between transfer learning and other relevant topics from an RL perspective and also explore the potential challenges as well as future development directions for transfer learning in RL.

Recently, deep multiagent reinforcement learning (MARL) has become a highly active research area as many real-world problems can be inherently viewed as multiagent systems. A particularly interesting and widely applicable class of problems is the partially observable cooperative multiagent setting, in which a team of agents learns to coordinate their behaviors conditioning on their private observations and commonly shared global reward signals. One natural solution is to resort to the centralized training and decentralized execution paradigm. During centralized training, one key challenge is the multiagent credit assignment: how to allocate the global rewards for individual agent policies for better coordination towards maximizing system-level's benefits. In this paper, we propose a new method called Q-value Path Decomposition (QPD) to decompose the system's global Q-values into individual agents' Q-values. Unlike previous works which restrict the representation relation of the individual Q-values and the global one, we leverage the integrated gradient attribution technique into deep MARL to directly decompose global Q-values along trajectory paths to assign credits for agents. We evaluate QPD on the challenging StarCraft II micromanagement tasks and show that QPD achieves the state-of-the-art performance in both homogeneous and heterogeneous multiagent scenarios compared with existing cooperative MARL algorithms.

北京阿比特科技有限公司