亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Debugging physical computing projects provides a rich context to understand cross-disciplinary problem solving that integrates multiple domains of computing and engineering. Yet understanding and assessing students' learning of debugging remains a challenge, particularly in understudied areas such as physical computing, since finding and fixing hardware and software bugs is a deeply contextual practice. In this paper we draw on the rich history of clinical interviews to develop and pilot "failure artifact scenarios" in order to study changes in students' approaches to debugging and troubleshooting electronic textiles (e-textiles). We applied this clinical interview protocol before and after an eight-week-long e-textiles unit. We analyzed pre/post clinical interviews from 18 students at four different schools. The analysis revealed that students improved in identifying bugs with greater specificity, and across domains, and in considering multiple causes for bugs. We discuss implications for developing tools to assess students' debugging abilities through contextualized debugging scenarios in physical computing.

相關內容

In robotics, contemporary strategies are learning-based, characterized by a complex black-box nature and a lack of interpretability, which may pose challenges in ensuring stability and safety. To address these issues, we propose integrating an obstacle-free deep reinforcement learning (DRL) trajectory planner with a novel auto-tuning low- and joint-level control strategy, all while actively engaging in the learning phase through interactions with the environment. This approach circumvents the complexities associated with computations while also addressing nonrepetitive and random obstacle avoidance tasks. First, a model-free DRL agent to plan velocity-bounded and obstacle-free motion is employed for a manipulator with 'n' degrees of freedom (DoF) in task space through joint-level reasoning. This plan is then input into a robust subsystem-based adaptive controller, which produces the necessary torques, while the Cuckoo Search Optimization (CSO) algorithm enhances control gains to minimize the time required to reach, time taken to stabilize, the maximum deviation from the desired value, and persistent tracking error in the steady state. This approach guarantees that position and velocity errors exponentially converge to zero in an unfamiliar environment, despite unknown robotic manipulator modeling. Theoretical assertions are validated through the presentation of simulation outcomes.

While individual robots are becoming increasingly capable, with new sensors and actuators, the complexity of expected missions increased exponentially in comparison. To cope with this complexity, heterogeneous teams of robots have become a significant research interest in recent years. Making effective use of the robots and their unique skills in a team is challenging. Dynamic runtime conditions often make static task allocations infeasible, therefore requiring a dynamic, capability-aware allocation of tasks to team members. To this end, we propose and implement a system that allows a user to specify missions using Bheavior Trees (BTs), which can then, at runtime, be dynamically allocated to the current robot team. The system allows to statically model an individual robot's capabilities within our ros_bt_py BT framework. It offers a runtime auction system to dynamically allocate tasks to the most capable robot in the current team. The system leverages utility values and pre-conditions to ensure that the allocation improves the overall mission execution quality while preventing faulty assignments. To evaluate the system, we simulated a find-and-decontaminate mission with a team of three heterogeneous robots and analyzed the utilization and overall mission times as metrics. Our results show that our system can improve the overall effectiveness of a team while allowing for intuitive mission specification and flexibility in the team composition.

We develop an enthalpy-based modeling and computational framework to quantify uncertainty in Stefan problems with an injection boundary. Inspired by airfoil icing studies, we consider a system featuring an injection boundary inducing domain changes and a free boundary separating phases, resulting in two types of moving boundaries. Our proposed enthalpy-based formulation seamlessly integrates thermal diffusion across the domain with energy fluxes at the boundaries, addressing a modified injection condition for boundary movement. Uncertainty then stems from random variations in the injection boundary. The primary focus of our Uncertainty Quantification (UQ) centers on investigating the effects of uncertainty on free boundary propagation. Through mapping to a reference domain, we derive an enthalpy-based numerical scheme tailored to the transformed coordinate system, facilitating a simple and efficient simulation. Numerical and UQ studies in one and two dimensions validate the proposed model and the extended enthalpy method. They offer intriguing insights into ice accretion and other multiphysics processes involving phase transitions.

Dimensionality reduction methods, such as principal component analysis (PCA) and factor analysis, are central to many problems in data science. There are, however, serious and well-understood challenges to finding robust low dimensional approximations for data with significant heteroskedastic noise. This paper introduces a relaxed version of Minimum Trace Factor Analysis (MTFA), a convex optimization method with roots dating back to the work of Ledermann in 1940. This relaxation is particularly effective at not overfitting to heteroskedastic perturbations and addresses the commonly cited Heywood cases in factor analysis and the recently identified "curse of ill-conditioning" for existing spectral methods. We provide theoretical guarantees on the accuracy of the resulting low rank subspace and the convergence rate of the proposed algorithm to compute that matrix. We develop a number of interesting connections to existing methods, including HeteroPCA, Lasso, and Soft-Impute, to fill an important gap in the already large literature on low rank matrix estimation. Numerical experiments benchmark our results against several recent proposals for dealing with heteroskedastic noise.

In response to the evolving landscape of quantum computing and the escalating vulnerabilities in classical cryptographic systems, our paper introduces a unified cryptographic framework. Rooted in the innovative work of Kuang et al., we leverage two novel primitives: the Quantum Permutation Pad (QPP) for symmetric key encryption and the Homomorphic Polynomial Public Key (HPPK) for Key Encapsulation Mechanism (KEM) and Digital Signatures (DS). Our approach adeptly confronts the challenges posed by quantum advancements. Utilizing the Galois Permutation Group's matrix representations and inheriting its bijective and non-commutative properties, QPP achieves quantum-secure symmetric key encryption, seamlessly extending Shannon's perfect secrecy to both classical and quantum-native systems. Meanwhile, HPPK, free from NP-hard problems, fortifies symmetric encryption for the plain public key. It accomplishes this by concealing the mathematical structure through modular multiplications or arithmetic representations of Galois Permutation Group over hidden rings, harnessing their partial homomorphic properties. This allows for secure computation on encrypted data during secret encapsulations, bolstering the security of the plain public key. The seamless integration of KEM and DS within HPPK cryptography yields compact key, cipher, and signature sizes, demonstrating exceptional performance. This paper organically unifies QPP and HPPK under the Galois Permutation Group, marking a significant advancement in laying the groundwork for quantum-resistant cryptographic protocols. Our contribution propels the development of secure communication systems amid the era of quantum computing.

Human intelligence thrives on the concept of cognitive synergy, where collaboration and information integration among different cognitive processes yield superior outcomes compared to individual cognitive processes in isolation. Although Large Language Models (LLMs) have demonstrated promising performance as general task-solving agents, they still struggle with tasks that require intensive domain knowledge and complex reasoning. In this work, we propose Solo Performance Prompting (SPP), which transforms a single LLM into a cognitive synergist by engaging in multi-turn self-collaboration with multiple personas. A cognitive synergist refers to an intelligent agent that collaborates with multiple minds, combining their individual strengths and knowledge, to enhance problem-solving and overall performance in complex tasks. By dynamically identifying and simulating different personas based on task inputs, SPP unleashes the potential of cognitive synergy in LLMs. We have discovered that assigning multiple, fine-grained personas in LLMs elicits better problem-solving abilities compared to using a single or fixed number of personas. We evaluate SPP on three challenging tasks: Trivia Creative Writing, Codenames Collaborative, and Logic Grid Puzzle, encompassing both knowledge-intensive and reasoning-intensive types. Unlike previous works, such as Chain-of-Thought, that solely enhance the reasoning abilities in LLMs, SPP effectively elicits internal knowledge acquisition abilities, reduces hallucination, and maintains strong reasoning capabilities. Code, data, and prompts can be found at: //github.com/MikeWangWZHL/Solo-Performance-Prompting.git.

The existence of representative datasets is a prerequisite of many successful artificial intelligence and machine learning models. However, the subsequent application of these models often involves scenarios that are inadequately represented in the data used for training. The reasons for this are manifold and range from time and cost constraints to ethical considerations. As a consequence, the reliable use of these models, especially in safety-critical applications, is a huge challenge. Leveraging additional, already existing sources of knowledge is key to overcome the limitations of purely data-driven approaches, and eventually to increase the generalization capability of these models. Furthermore, predictions that conform with knowledge are crucial for making trustworthy and safe decisions even in underrepresented scenarios. This work provides an overview of existing techniques and methods in the literature that combine data-based models with existing knowledge. The identified approaches are structured according to the categories integration, extraction and conformity. Special attention is given to applications in the field of autonomous driving.

Deep reinforcement learning algorithms can perform poorly in real-world tasks due to the discrepancy between source and target environments. This discrepancy is commonly viewed as the disturbance in transition dynamics. Many existing algorithms learn robust policies by modeling the disturbance and applying it to source environments during training, which usually requires prior knowledge about the disturbance and control of simulators. However, these algorithms can fail in scenarios where the disturbance from target environments is unknown or is intractable to model in simulators. To tackle this problem, we propose a novel model-free actor-critic algorithm -- namely, state-conservative policy optimization (SCPO) -- to learn robust policies without modeling the disturbance in advance. Specifically, SCPO reduces the disturbance in transition dynamics to that in state space and then approximates it by a simple gradient-based regularizer. The appealing features of SCPO include that it is simple to implement and does not require additional knowledge about the disturbance or specially designed simulators. Experiments in several robot control tasks demonstrate that SCPO learns robust policies against the disturbance in transition dynamics.

As soon as abstract mathematical computations were adapted to computation on digital computers, the problem of efficient representation, manipulation, and communication of the numerical values in those computations arose. Strongly related to the problem of numerical representation is the problem of quantization: in what manner should a set of continuous real-valued numbers be distributed over a fixed discrete set of numbers to minimize the number of bits required and also to maximize the accuracy of the attendant computations? This perennial problem of quantization is particularly relevant whenever memory and/or computational resources are severely restricted, and it has come to the forefront in recent years due to the remarkable performance of Neural Network models in computer vision, natural language processing, and related areas. Moving from floating-point representations to low-precision fixed integer values represented in four bits or less holds the potential to reduce the memory footprint and latency by a factor of 16x; and, in fact, reductions of 4x to 8x are often realized in practice in these applications. Thus, it is not surprising that quantization has emerged recently as an important and very active sub-area of research in the efficient implementation of computations associated with Neural Networks. In this article, we survey approaches to the problem of quantizing the numerical values in deep Neural Network computations, covering the advantages/disadvantages of current methods. With this survey and its organization, we hope to have presented a useful snapshot of the current research in quantization for Neural Networks and to have given an intelligent organization to ease the evaluation of future research in this area.

We introduce a generic framework that reduces the computational cost of object detection while retaining accuracy for scenarios where objects with varied sizes appear in high resolution images. Detection progresses in a coarse-to-fine manner, first on a down-sampled version of the image and then on a sequence of higher resolution regions identified as likely to improve the detection accuracy. Built upon reinforcement learning, our approach consists of a model (R-net) that uses coarse detection results to predict the potential accuracy gain for analyzing a region at a higher resolution and another model (Q-net) that sequentially selects regions to zoom in. Experiments on the Caltech Pedestrians dataset show that our approach reduces the number of processed pixels by over 50% without a drop in detection accuracy. The merits of our approach become more significant on a high resolution test set collected from YFCC100M dataset, where our approach maintains high detection performance while reducing the number of processed pixels by about 70% and the detection time by over 50%.

北京阿比特科技有限公司