亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

While power systems research relies on the availability of real-world network datasets, data owners (e.g., system operators) are hesitant to share data due to security and privacy risks. To control these risks, we develop privacy-preserving algorithms for the synthetic generation of optimization and machine learning datasets. Taking a real-world dataset as input, the algorithms output its noisy, synthetic version, which preserves the accuracy of the real data on a specific downstream model or even a large population of those. We control the privacy loss using Laplace and Exponential mechanisms of differential privacy and preserve data accuracy using a post-processing convex optimization. We apply the algorithms to generate synthetic network parameters and wind power data.

相關內容

機器(qi)學習系統(tong)設計(ji)系統(tong)評估標(biao)準

While ``instruction-tuned" generative large language models (LLMs) have demonstrated an impressive ability to generalize to new tasks, the training phases heavily rely on large amounts of diverse and high-quality instruction data (such as ChatGPT and GPT-4). Unfortunately, acquiring high-quality data, especially when it comes to human-written data, can pose significant challenges both in terms of cost and accessibility. Moreover, concerns related to privacy can further limit access to such data, making the process of obtaining it a complex and nuanced undertaking. Consequently, this hinders the generality of the tuned models and may restrict their effectiveness in certain contexts. To tackle this issue, our study introduces a new approach called Federated Instruction Tuning (FedIT), which leverages federated learning (FL) as the learning framework for the instruction tuning of LLMs. This marks the first exploration of FL-based instruction tuning for LLMs. This is especially important since text data is predominantly generated by end users. Therefore, it is imperative to design and adapt FL approaches to effectively leverage these users' diverse instructions stored on local devices, while preserving privacy and ensuring data security. In the current paper, by conducting widely used GPT-4 auto-evaluation, we demonstrate that by exploiting the heterogeneous and diverse sets of instructions on the client's end with the proposed framework FedIT, we improved the performance of LLMs compared to centralized training with only limited local instructions. Further, in this paper, we developed a Github repository named Shepherd. This repository offers a foundational framework for exploring federated fine-tuning of LLMs using heterogeneous instructions across diverse categories.

We introduce a priori Sobolev-space error estimates for the solution of nonlinear, and possibly parametric, PDEs using Gaussian process and kernel based methods. The primary assumptions are: (1) a continuous embedding of the reproducing kernel Hilbert space of the kernel into a Sobolev space of sufficient regularity; and (2) the stability of the differential operator and the solution map of the PDE between corresponding Sobolev spaces. The proof is articulated around Sobolev norm error estimates for kernel interpolants and relies on the minimizing norm property of the solution. The error estimates demonstrate dimension-benign convergence rates if the solution space of the PDE is smooth enough. We illustrate these points with applications to high-dimensional nonlinear elliptic PDEs and parametric PDEs. Although some recent machine learning methods have been presented as breaking the curse of dimensionality in solving high-dimensional PDEs, our analysis suggests a more nuanced picture: there is a trade-off between the regularity of the solution and the presence of the curse of dimensionality. Therefore, our results are in line with the understanding that the curse is absent when the solution is regular enough.

When applying differential privacy to sensitive data, we can often improve performance using external information such as other sensitive data, public data, or human priors. We propose to use the learning-augmented algorithms (or algorithms with predictions) framework -- previously applied largely to improve time complexity or competitive ratios -- as a powerful way of designing and analyzing privacy-preserving methods that can take advantage of such external information to improve utility. This idea is instantiated on the important task of multiple quantile release, for which we derive error guarantees that scale with a natural measure of prediction quality while (almost) recovering state-of-the-art prediction-independent guarantees. Our analysis enjoys several advantages, including minimal assumptions about the data, a natural way of adding robustness, and the provision of useful surrogate losses for two novel ``meta" algorithms that learn predictions from other (potentially sensitive) data. We conclude with experiments on challenging tasks demonstrating that learning predictions across one or more instances can lead to large error reductions while preserving privacy.

The agent learns to organize decision behavior to achieve a behavioral goal, such as reward maximization, and reinforcement learning is often used for this optimization. Learning an optimal behavioral strategy is difficult under the uncertainty that events necessary for learning are only partially observable, called as Partially Observable Markov Decision Process (POMDP). However, the real-world environment also gives many events irrelevant to reward delivery and an optimal behavioral strategy. The conventional methods in POMDP, which attempt to infer transition rules among the entire observations, including irrelevant states, are ineffective in such an environment. Supposing Redundantly Observable Markov Decision Process (ROMDP), here we propose a method for goal-oriented reinforcement learning to efficiently learn state transition rules among reward-related "core states'' from redundant observations. Starting with a small number of initial core states, our model gradually adds new core states to the transition diagram until it achieves an optimal behavioral strategy consistent with the Bellman equation. We demonstrate that the resultant inference model outperforms the conventional method for POMDP. We emphasize that our model only containing the core states has high explainability. Furthermore, the proposed method suits online learning as it suppresses memory consumption and improves learning speed.

We give a simple characterization of which functions can be computed deterministically by anonymous processes in dynamic networks, depending on the number of leaders in the network. In addition, we provide efficient distributed algorithms for computing all such functions assuming minimal or no knowledge about the network. Each of our algorithms comes in two versions: one that terminates with the correct output and a faster one that stabilizes on the correct output without explicit termination. Notably, these are the first deterministic algorithms whose running times scale linearly with both the number of processes and a parameter of the network which we call "dynamic disconnectivity" (meaning that our dynamic networks do not necessarily have to be connected at all times). We also provide matching lower bounds, showing that all our algorithms are asymptotically optimal for any fixed number of leaders. While most of the existing literature on anonymous dynamic networks relies on classical mass-distribution techniques, our work makes use of a recently introduced combinatorial structure called "history tree", also developing its theory in new directions. Among other contributions, our results make definitive progress on two popular fundamental problems for anonymous dynamic networks: leaderless Average Consensus (i.e., computing the mean value of input numbers distributed among the processes) and multi-leader Counting (i.e., determining the exact number of processes in the network). In fact, our approach unifies and improves upon several independent lines of research on anonymous networks, including Nedic et al., IEEE Trans. Automat. Contr. 2009; Olshevsky, SIAM J. Control Optim. 2017; Kowalski-Mosteiro, ICALP 2019, SPAA 2021; Di Luna-Viglietta, FOCS 2022.

This paper is the first to attempt differentially private (DP) topological data analysis (TDA), producing near-optimal private persistence diagrams. We analyze the sensitivity of persistence diagrams in terms of the bottleneck distance, and we show that the commonly used \v{C}ech complex has sensitivity that does not decrease as the sample size $n$ increases. This makes it challenging for the persistence diagrams of \v{C}ech complexes to be privatized. As an alternative, we show that the persistence diagram obtained by the $L^1$-distance to measure (DTM) has sensitivity $O(1/n)$. Based on the sensitivity analysis, we propose using the exponential mechanism whose utility function is defined in terms of the bottleneck distance of the $L^1$-DTM persistence diagrams. We also derive upper and lower bounds of the accuracy of our privacy mechanism; the obtained bounds indicate that the privacy error of our mechanism is near-optimal. We demonstrate the performance of our privatized persistence diagrams through simulations as well as on a real dataset tracking human movement.

State-of-the-art research of traditional computer vision is increasingly leveraged in the surgical domain. A particular focus in computer-assisted surgery is to replace marker-based tracking systems for instrument localization with pure image-based 6DoF pose estimation. However, the state of the art has not yet met the accuracy required for surgical navigation. In this context, we propose a high-fidelity marker-less optical tracking system for surgical instrument localization. We developed a multi-view camera setup consisting of static and mobile cameras and collected a large-scale RGB-D video dataset with dedicated synchronization and data fusions methods. Different state-of-the-art pose estimation methods were integrated into a deep learning pipeline and evaluated on multiple camera configurations. Furthermore, the performance impacts of different input modalities and camera positions, as well as training on purely synthetic data, were compared. The best model achieved an average position and orientation error of 1.3 mm and 1.0{\deg} for a surgical drill as well as 3.8 mm and 5.2{\deg} for a screwdriver. These results significantly outperform related methods in the literature and are close to clinical-grade accuracy, demonstrating that marker-less tracking of surgical instruments is becoming a feasible alternative to existing marker-based systems.

Obtaining high-quality data for collaborative training of machine learning models can be a challenging task due to A) the regulatory concerns and B) lack of incentive to participate. The first issue can be addressed through the use of privacy enhancing technologies (PET), one of the most frequently used one being differentially private (DP) training. The second challenge can be addressed by identifying which data points can be beneficial for model training and rewarding data owners for sharing this data. However, DP in deep learning typically adversely affects atypical (often informative) data samples, making it difficult to assess the usefulness of individual contributions. In this work we investigate how to leverage gradient information to identify training samples of interest in private training settings. We show that there exist techniques which are able to provide the clients with the tools for principled data selection even in strictest privacy settings.

Deep learning-based image signal processor (ISP) models for mobile cameras can generate high-quality images that rival those of professional DSLR cameras. However, their computational demands often make them unsuitable for mobile settings. Additionally, modern mobile cameras employ non-Bayer color filter arrays (CFA) such as Quad Bayer, Nona Bayer, and QxQ Bayer to enhance image quality, yet most existing deep learning-based ISP (or demosaicing) models focus primarily on standard Bayer CFAs. In this study, we present PyNET-QxQ, a lightweight demosaicing model specifically designed for QxQ Bayer CFA patterns, which is derived from the original PyNET. We also propose a knowledge distillation method called progressive distillation to train the reduced network more effectively. Consequently, PyNET-QxQ contains less than 2.5% of the parameters of the original PyNET while preserving its performance. Experiments using QxQ images captured by a proto type QxQ camera sensor show that PyNET-QxQ outperforms existing conventional algorithms in terms of texture and edge reconstruction, despite its significantly reduced parameter count.

With the increasing use of cloud-based services for training and deploying machine learning models, data privacy has become a major concern. This is particularly important for natural language processing (NLP) models, which often process sensitive information such as personal communications and confidential documents. In this study, we propose a method for training NLP models on encrypted text data to mitigate data privacy concerns while maintaining similar performance to models trained on non-encrypted data. We demonstrate our method using two different architectures, namely Doc2Vec+XGBoost and Doc2Vec+LSTM, and evaluate the models on the 20 Newsgroups dataset. Our results indicate that both encrypted and non-encrypted models achieve comparable performance, suggesting that our encryption method is effective in preserving data privacy without sacrificing model accuracy. In order to replicate our experiments, we have provided a Colab notebook at the following address: //t.ly/lR-TP

北京阿比特科技有限公司