An effective technique for obtaining high-quality representations is adding a projection head on top of the encoder during training, then discarding it and using the pre-projection representations. Despite its proven practical effectiveness, the reason behind the success of this technique is poorly understood. The pre-projection representations are not directly optimized by the loss function, raising the question: what makes them better? In this work, we provide a rigorous theoretical answer to this question. We start by examining linear models trained with self-supervised contrastive loss. We reveal that the implicit bias of training algorithms leads to layer-wise progressive feature weighting, where features become increasingly unequal as we go deeper into the layers. Consequently, lower layers tend to have more normalized and less specialized representations. We theoretically characterize scenarios where such representations are more beneficial, highlighting the intricate interplay between data augmentation and input features. Additionally, we demonstrate that introducing non-linearity into the network allows lower layers to learn features that are completely absent in higher layers. Finally, we show how this mechanism improves the robustness in supervised contrastive learning and supervised learning. We empirically validate our results through various experiments on CIFAR-10/100, UrbanCars and shifted versions of ImageNet. We also introduce a potential alternative to projection head, which offers a more interpretable and controllable design.
The specification of a covariance function is of paramount importance when employing Gaussian process models, but the requirement of positive definiteness severely limits those used in practice. Designing flexible stationary covariance functions is, however, straightforward in the spectral domain, where one needs only to supply a positive and symmetric spectral density. In this work, we introduce an adaptive integration framework for efficiently and accurately evaluating covariance functions and their derivatives at irregular locations directly from \textit{any} continuous, integrable spectral density. In order to make this approach computationally tractable, we employ high-order panel quadrature, the nonuniform fast Fourier transform, and a Nyquist-informed panel selection heuristic, and derive novel algebraic truncation error bounds which are used to monitor convergence. As a result, we demonstrate several orders of magnitude speedup compared to naive uniform quadrature approaches, allowing us to evaluate covariance functions from slowly decaying, singular spectral densities at millions of locations to a user-specified tolerance in seconds on a laptop. We then apply our methodology to perform gradient-based maximum likelihood estimation using a previously numerically infeasible long-memory spectral model for wind velocities below the atmospheric boundary layer.
The evaluation of procedural content generation (PCG) systems for generating video game levels is a complex and contested topic. Ideally, the field would have access to robust, generalisable and widely accepted evaluation approaches that can be used to compare novel PCG systems to prior work, but consensus on how to evaluate novel systems is currently limited. We argue that the field can benefit from a structured analysis of how procedural level generation systems can be evaluated, and how these techniques are currently used by researchers. This analysis can then be used to both inform on the current state of affairs, and to provide data to justify changes to this practice. This work aims to provide this by first developing a novel taxonomy of PCG evaluation approaches, and then presenting the results of a survey of recent work in the field through the lens of this taxonomy. The results of this survey highlight several important weaknesses in current practice which we argue could be substantially mitigated by 1) promoting use of evaluation free system descriptions where appropriate, 2) promoting the development of diverse research frameworks, 3) promoting reuse of code and methodology wherever possible.
Capability ontologies are increasingly used to model functionalities of systems or machines. The creation of such ontological models with all properties and constraints of capabilities is very complex and can only be done by ontology experts. However, Large Language Models (LLMs) have shown that they can generate machine-interpretable models from natural language text input and thus support engineers / ontology experts. Therefore, this paper investigates how LLMs can be used to create capability ontologies. We present a study with a series of experiments in which capabilities with varying complexities are generated using different prompting techniques and with different LLMs. Errors in the generated ontologies are recorded and compared. To analyze the quality of the generated ontologies, a semi-automated approach based on RDF syntax checking, OWL reasoning, and SHACL constraints is used. The results of this study are very promising because even for complex capabilities, the generated ontologies are almost free of errors.
Bayesian inference and the use of posterior or posterior predictive probabilities for decision making have become increasingly popular in clinical trials. The current practice in Bayesian clinical trials relies on a hybrid Bayesian-frequentist approach where the design and decision criteria are assessed with respect to frequentist operating characteristics such as power and type I error rate conditioning on a given set of parameters. These operating characteristics are commonly obtained via simulation studies. The utility of Bayesian measures, such as ``assurance", that incorporate uncertainty about model parameters in estimating the probabilities of various decisions in trials has been demonstrated recently. However, the computational burden remains an obstacle toward wider use of such criteria. In this article, we propose methodology which utilizes large sample theory of the posterior distribution to define parametric models for the sampling distribution of the posterior summaries used for decision making. The parameters of these models are estimated using a small number of simulation scenarios, thereby refining these models to capture the sampling distribution for small to moderate sample size. The proposed approach toward the assessment of conditional and marginal operating characteristics and sample size determination can be considered as simulation-assisted rather than simulation-based. It enables formal incorporation of uncertainty about the trial assumptions via a design prior and significantly reduces the computational burden for the design of Bayesian trials in general.
Large Vision-Language Models (LVLMs) are gaining traction for their remarkable ability to process and integrate visual and textual data. Despite their popularity, the capacity of LVLMs to generate precise, fine-grained textual descriptions has not been fully explored. This study addresses this gap by focusing on \textit{distinctiveness} and \textit{fidelity}, assessing how models like Open-Flamingo, IDEFICS, and MiniGPT-4 can distinguish between similar objects and accurately describe visual features. We proposed the Textual Retrieval-Augmented Classification (TRAC) framework, which, by leveraging its generative capabilities, allows us to delve deeper into analyzing fine-grained visual description generation. This research provides valuable insights into the generation quality of LVLMs, enhancing the understanding of multimodal language models. Notably, MiniGPT-4 stands out for its better ability to generate fine-grained descriptions, outperforming the other two models in this aspect. The code is provided at \url{//anonymous.4open.science/r/Explore_FGVDs-E277}.
Event reasoning is a fundamental ability that underlies many applications. It requires event schema knowledge to perform global reasoning and needs to deal with the diversity of the inter-event relations and the reasoning paradigms. How well LLMs accomplish event reasoning on various relations and reasoning paradigms remains unknown. To mitigate this disparity, we comprehensively evaluate the abilities of event reasoning of LLMs. We introduce a novel benchmark EV2 for EValuation of EVent reasoning. EV2 consists of two levels of evaluation of schema and instance and is comprehensive in relations and reasoning paradigms. We conduct extensive experiments on EV2. We find that LLMs have abilities to accomplish event reasoning but their performances are far from satisfactory. We also notice the imbalance of event reasoning abilities in LLMs. Besides, LLMs have event schema knowledge, however, they're not aligned with humans on how to utilize the knowledge. Based on these findings, we introduce two methods to guide the LLMs to utilize the event schema knowledge. Both methods achieve improvements.
Recent years have witnessed a rapid development of deep generative models for creating synthetic media, such as images and videos. While the practical applications of these models in everyday tasks are enticing, it is crucial to assess the inherent risks regarding their fairness. In this work, we introduce a comprehensive framework for benchmarking the performance and fairness of conditional generative models. We develop a set of metrics$\unicode{x2013}$inspired by their supervised fairness counterparts$\unicode{x2013}$to evaluate the models on their fairness and diversity. Focusing on the specific application of image upsampling, we create a benchmark covering a wide variety of modern upsampling methods. As part of the benchmark, we introduce UnfairFace, a subset of FairFace that replicates the racial distribution of common large-scale face datasets. Our empirical study highlights the importance of using an unbiased training set and reveals variations in how the algorithms respond to dataset imbalances. Alarmingly, we find that none of the considered methods produces statistically fair and diverse results. All experiments can be reproduced using our provided repository.
Reasoning, a crucial ability for complex problem-solving, plays a pivotal role in various real-world settings such as negotiation, medical diagnosis, and criminal investigation. It serves as a fundamental methodology in the field of Artificial General Intelligence (AGI). With the ongoing development of foundation models, e.g., Large Language Models (LLMs), there is a growing interest in exploring their abilities in reasoning tasks. In this paper, we introduce seminal foundation models proposed or adaptable for reasoning, highlighting the latest advancements in various reasoning tasks, methods, and benchmarks. We then delve into the potential future directions behind the emergence of reasoning abilities within foundation models. We also discuss the relevance of multimodal learning, autonomous agents, and super alignment in the context of reasoning. By discussing these future research directions, we hope to inspire researchers in their exploration of this field, stimulate further advancements in reasoning with foundation models, and contribute to the development of AGI.
The dominating NLP paradigm of training a strong neural predictor to perform one task on a specific dataset has led to state-of-the-art performance in a variety of applications (eg. sentiment classification, span-prediction based question answering or machine translation). However, it builds upon the assumption that the data distribution is stationary, ie. that the data is sampled from a fixed distribution both at training and test time. This way of training is inconsistent with how we as humans are able to learn from and operate within a constantly changing stream of information. Moreover, it is ill-adapted to real-world use cases where the data distribution is expected to shift over the course of a model's lifetime. The first goal of this thesis is to characterize the different forms this shift can take in the context of natural language processing, and propose benchmarks and evaluation metrics to measure its effect on current deep learning architectures. We then proceed to take steps to mitigate the effect of distributional shift on NLP models. To this end, we develop methods based on parametric reformulations of the distributionally robust optimization framework. Empirically, we demonstrate that these approaches yield more robust models as demonstrated on a selection of realistic problems. In the third and final part of this thesis, we explore ways of efficiently adapting existing models to new domains or tasks. Our contribution to this topic takes inspiration from information geometry to derive a new gradient update rule which alleviate catastrophic forgetting issues during adaptation.
As soon as abstract mathematical computations were adapted to computation on digital computers, the problem of efficient representation, manipulation, and communication of the numerical values in those computations arose. Strongly related to the problem of numerical representation is the problem of quantization: in what manner should a set of continuous real-valued numbers be distributed over a fixed discrete set of numbers to minimize the number of bits required and also to maximize the accuracy of the attendant computations? This perennial problem of quantization is particularly relevant whenever memory and/or computational resources are severely restricted, and it has come to the forefront in recent years due to the remarkable performance of Neural Network models in computer vision, natural language processing, and related areas. Moving from floating-point representations to low-precision fixed integer values represented in four bits or less holds the potential to reduce the memory footprint and latency by a factor of 16x; and, in fact, reductions of 4x to 8x are often realized in practice in these applications. Thus, it is not surprising that quantization has emerged recently as an important and very active sub-area of research in the efficient implementation of computations associated with Neural Networks. In this article, we survey approaches to the problem of quantizing the numerical values in deep Neural Network computations, covering the advantages/disadvantages of current methods. With this survey and its organization, we hope to have presented a useful snapshot of the current research in quantization for Neural Networks and to have given an intelligent organization to ease the evaluation of future research in this area.