Robots rely heavily on sensors, especially RGB and depth cameras, to perceive and interact with the world. RGB cameras record 2D images with rich semantic information while missing precise spatial information. On the other side, depth cameras offer critical 3D geometry data but capture limited semantics. Therefore, integrating both modalities is crucial for learning representations for robotic perception and control. However, current research predominantly focuses on only one of these modalities, neglecting the benefits of incorporating both. To this end, we present Semantic-Geometric Representation (SGR), a universal perception module for robotics that leverages the rich semantic information of large-scale pre-trained 2D models and inherits the merits of 3D spatial reasoning. Our experiments demonstrate that SGR empowers the agent to successfully complete a diverse range of simulated and real-world robotic manipulation tasks, outperforming state-of-the-art methods significantly in both single-task and multi-task settings. Furthermore, SGR possesses the unique capability to generalize to novel semantic attributes, setting it apart from the other methods.
Virtual Knowledge Graphs (VKG) constitute one of the most promising paradigms for integrating and accessing legacy data sources. A critical bottleneck in the integration process involves the definition, validation, and maintenance of mappings that link data sources to a domain ontology. To support the management of mappings throughout their entire lifecycle, we propose a comprehensive catalog of sophisticated mapping patterns that emerge when linking databases to ontologies. To do so, we build on well-established methodologies and patterns studied in data management, data analysis, and conceptual modeling. These are extended and refined through the analysis of concrete VKG benchmarks and real-world use cases, and considering the inherent impedance mismatch between data sources and ontologies. We validate our catalog on the considered VKG scenarios, showing that it covers the vast majority of patterns present therein.
Transformer has recently gained considerable popularity in low-level vision tasks, including image super-resolution (SR). These networks utilize self-attention along different dimensions, spatial or channel, and achieve impressive performance. This inspires us to combine the two dimensions in Transformer for a more powerful representation capability. Based on the above idea, we propose a novel Transformer model, Dual Aggregation Transformer (DAT), for image SR. Our DAT aggregates features across spatial and channel dimensions, in the inter-block and intra-block dual manner. Specifically, we alternately apply spatial and channel self-attention in consecutive Transformer blocks. The alternate strategy enables DAT to capture the global context and realize inter-block feature aggregation. Furthermore, we propose the adaptive interaction module (AIM) and the spatial-gate feed-forward network (SGFN) to achieve intra-block feature aggregation. AIM complements two self-attention mechanisms from corresponding dimensions. Meanwhile, SGFN introduces additional non-linear spatial information in the feed-forward network. Extensive experiments show that our DAT surpasses current methods. Code and models are obtainable at //github.com/zhengchen1999/DAT.
Various autonomous applications rely on recognizing specific known landmarks in their environment. For example, Simultaneous Localization And Mapping (SLAM) is an important technique that lays the foundation for many common tasks, such as navigation and long-term object tracking. This entails building a map on the go based on sensory inputs which are prone to accumulating errors. Recognizing landmarks in the environment plays a vital role in correcting these errors and further improving the accuracy of SLAM. The most popular choice of sensors for conducting SLAM today is optical sensors such as cameras or LiDAR sensors. These can use landmarks such as QR codes as a prerequisite. However, such sensors become unreliable in certain conditions, e.g., foggy, dusty, reflective, or glass-rich environments. Sonar has proven to be a viable alternative to manage such situations better. However, acoustic sensors also require a different type of landmark. In this paper, we put forward a method to detect the presence of bio-mimetic acoustic landmarks using support vector machines trained on the frequency bands of the reflecting acoustic echoes using an embedded real-time imaging sonar.
Video Semantic Role Labeling (VidSRL) aims to detect the salient events from given videos, by recognizing the predict-argument event structures and the interrelationships between events. While recent endeavors have put forth methods for VidSRL, they can be mostly subject to two key drawbacks, including the lack of fine-grained spatial scene perception and the insufficiently modeling of video temporality. Towards this end, this work explores a novel holistic spatio-temporal scene graph (namely HostSG) representation based on the existing dynamic scene graph structures, which well model both the fine-grained spatial semantics and temporal dynamics of videos for VidSRL. Built upon the HostSG, we present a nichetargeting VidSRL framework. A scene-event mapping mechanism is first designed to bridge the gap between the underlying scene structure and the high-level event semantic structure, resulting in an overall hierarchical scene-event (termed ICE) graph structure. We further perform iterative structure refinement to optimize the ICE graph, such that the overall structure representation can best coincide with end task demand. Finally, three subtask predictions of VidSRL are jointly decoded, where the end-to-end paradigm effectively avoids error propagation. On the benchmark dataset, our framework boosts significantly over the current best-performing model. Further analyses are shown for a better understanding of the advances of our methods.
This paper presents the time-domain wideband spherical microphone array impulse response generator (TDW-SMIR generator), which is a time-domain wideband image source method (ISM) for generating the room impulse responses captured by an open spherical microphone array. To incorporate loudspeaker directivity, the TDW-SMIR generator considers a source that emits a sequence of spherical wave fronts whose amplitudes are related to the loudspeaker directional impulse responses measured in the far-field. The TDW-SMIR generator uses geometric models to derive the time-domain signals recorded by the spherical microphone array. Comparisons are made with frequency-domain single band ISMs. Simulation results prove the results of the TDW-SMIR generator are similar to those of frequency-domain single band ISMs.
Existing knowledge graph (KG) embedding models have primarily focused on static KGs. However, real-world KGs do not remain static, but rather evolve and grow in tandem with the development of KG applications. Consequently, new facts and previously unseen entities and relations continually emerge, necessitating an embedding model that can quickly learn and transfer new knowledge through growth. Motivated by this, we delve into an expanding field of KG embedding in this paper, i.e., lifelong KG embedding. We consider knowledge transfer and retention of the learning on growing snapshots of a KG without having to learn embeddings from scratch. The proposed model includes a masked KG autoencoder for embedding learning and update, with an embedding transfer strategy to inject the learned knowledge into the new entity and relation embeddings, and an embedding regularization method to avoid catastrophic forgetting. To investigate the impacts of different aspects of KG growth, we construct four datasets to evaluate the performance of lifelong KG embedding. Experimental results show that the proposed model outperforms the state-of-the-art inductive and lifelong embedding baselines.
Data in Knowledge Graphs often represents part of the current state of the real world. Thus, to stay up-to-date the graph data needs to be updated frequently. To utilize information from Knowledge Graphs, many state-of-the-art machine learning approaches use embedding techniques. These techniques typically compute an embedding, i.e., vector representations of the nodes as input for the main machine learning algorithm. If a graph update occurs later on -- specifically when nodes are added or removed -- the training has to be done all over again. This is undesirable, because of the time it takes and also because downstream models which were trained with these embeddings have to be retrained if they change significantly. In this paper, we investigate embedding updates that do not require full retraining and evaluate them in combination with various embedding models on real dynamic Knowledge Graphs covering multiple use cases. We study approaches that place newly appearing nodes optimally according to local information, but notice that this does not work well. However, we find that if we continue the training of the old embedding, interleaved with epochs during which we only optimize for the added and removed parts, we obtain good results in terms of typical metrics used in link prediction. This performance is obtained much faster than with a complete retraining and hence makes it possible to maintain embeddings for dynamic Knowledge Graphs.
Vast amount of data generated from networks of sensors, wearables, and the Internet of Things (IoT) devices underscores the need for advanced modeling techniques that leverage the spatio-temporal structure of decentralized data due to the need for edge computation and licensing (data access) issues. While federated learning (FL) has emerged as a framework for model training without requiring direct data sharing and exchange, effectively modeling the complex spatio-temporal dependencies to improve forecasting capabilities still remains an open problem. On the other hand, state-of-the-art spatio-temporal forecasting models assume unfettered access to the data, neglecting constraints on data sharing. To bridge this gap, we propose a federated spatio-temporal model -- Cross-Node Federated Graph Neural Network (CNFGNN) -- which explicitly encodes the underlying graph structure using graph neural network (GNN)-based architecture under the constraint of cross-node federated learning, which requires that data in a network of nodes is generated locally on each node and remains decentralized. CNFGNN operates by disentangling the temporal dynamics modeling on devices and spatial dynamics on the server, utilizing alternating optimization to reduce the communication cost, facilitating computations on the edge devices. Experiments on the traffic flow forecasting task show that CNFGNN achieves the best forecasting performance in both transductive and inductive learning settings with no extra computation cost on edge devices, while incurring modest communication cost.
Knowledge graph (KG) embeddings learn low-dimensional representations of entities and relations to predict missing facts. KGs often exhibit hierarchical and logical patterns which must be preserved in the embedding space. For hierarchical data, hyperbolic embedding methods have shown promise for high-fidelity and parsimonious representations. However, existing hyperbolic embedding methods do not account for the rich logical patterns in KGs. In this work, we introduce a class of hyperbolic KG embedding models that simultaneously capture hierarchical and logical patterns. Our approach combines hyperbolic reflections and rotations with attention to model complex relational patterns. Experimental results on standard KG benchmarks show that our method improves over previous Euclidean- and hyperbolic-based efforts by up to 6.1% in mean reciprocal rank (MRR) in low dimensions. Furthermore, we observe that different geometric transformations capture different types of relations while attention-based transformations generalize to multiple relations. In high dimensions, our approach yields new state-of-the-art MRRs of 49.6% on WN18RR and 57.7% on YAGO3-10.
We investigate the problem of automatically determining what type of shoe left an impression found at a crime scene. This recognition problem is made difficult by the variability in types of crime scene evidence (ranging from traces of dust or oil on hard surfaces to impressions made in soil) and the lack of comprehensive databases of shoe outsole tread patterns. We find that mid-level features extracted by pre-trained convolutional neural nets are surprisingly effective descriptors for this specialized domains. However, the choice of similarity measure for matching exemplars to a query image is essential to good performance. For matching multi-channel deep features, we propose the use of multi-channel normalized cross-correlation and analyze its effectiveness. Our proposed metric significantly improves performance in matching crime scene shoeprints to laboratory test impressions. We also show its effectiveness in other cross-domain image retrieval problems: matching facade images to segmentation labels and aerial photos to map images. Finally, we introduce a discriminatively trained variant and fine-tune our system through our proposed metric, obtaining state-of-the-art performance.