亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Clarifying questions are an integral component of modern information retrieval systems, directly impacting user satisfaction and overall system performance. Poorly formulated questions can lead to user frustration and confusion, negatively affecting the system's performance. This research addresses the urgent need to identify and leverage key features that contribute to the classification of clarifying questions, enhancing user satisfaction. To gain deeper insights into how different features influence user satisfaction, we conduct a comprehensive analysis, considering a broad spectrum of lexical, semantic, and statistical features, such as question length and sentiment polarity. Our empirical results provide three main insights into the qualities of effective query clarification: (1) specific questions are more effective than generic ones; (2) the subjectivity and emotional tone of a question play a role; and (3) shorter and more ambiguous queries benefit significantly from clarification. Based on these insights, we implement feature-integrated user satisfaction prediction using various classifiers, both traditional and neural-based, including random forest, BERT, and large language models. Our experiments show a consistent and significant improvement, particularly in traditional classifiers, with a minimum performance boost of 45\%. This study presents invaluable guidelines for refining the formulation of clarifying questions and enhancing both user satisfaction and system performance.

相關內容

Performance:International Symposium on Computer Performance Modeling, Measurements and Evaluation。 Explanation:計算機性能建模、測量和評估國際研討會。 Publisher:ACM。 SIT:

Differential privacy via output perturbation has been a de facto standard for releasing query or computation results on sensitive data. However, we identify that all existing Gaussian mechanisms suffer from the curse of full-rank covariance matrices. To lift this curse, we design a Rank-1 Singular Multivariate Gaussian (R1SMG) mechanism. It achieves DP on high dimension query results by perturbing the results with noise following a singular multivariate Gaussian distribution, whose covariance matrix is a randomly generated rank-1 positive semi-definite matrix. In contrast, the classic Gaussian mechanism and its variants all consider deterministic full-rank covariance matrices. Our idea is motivated by a clue from Dwork et al.'s seminal work on the classic Gaussian mechanism that has been ignored in the literature: when projecting multivariate Gaussian noise with a full-rank covariance matrix onto a set of orthonormal basis, only the coefficient of a single basis can contribute to the privacy guarantee. This paper makes the following technical contributions. The R1SMG mechanisms achieves DP guarantee on high dimension query results, while its expected accuracy loss is lower bounded by a term that is on a lower order of magnitude by at least the dimension of query results compared existing Gaussian mechanisms. Compared with other mechanisms, the R1SMG mechanism is more stable and less likely to generate noise with large magnitude that overwhelms the query results, because the kurtosis and skewness of the nondeterministic accuracy loss introduced by this mechanism is larger than that introduced by other mechanisms.

Evaluating the alignment of large language models (LLMs) with user-defined coding preferences is a challenging endeavour that requires assessing intricate textual LLMs' outputs. By relying on automated metrics and static analysis tools, existing benchmarks fail to assess nuances in user instructions and LLM outputs, highlighting the need for large-scale datasets and benchmarks for LLM preference alignment. In this paper, we introduce CodeUltraFeedback, a preference dataset of 10,000 complex instructions to tune and align LLMs to coding preferences through AI feedback. We generate responses to the instructions using a pool of 14 diverse LLMs, which we then annotate according to their alignment with five coding preferences using the LLM-as-a-Judge approach with GPT-3.5, producing both numerical and textual feedback. We also present CODAL-Bench, a benchmark for assessing LLM alignment with these coding preferences. Our results show that CodeLlama-7B-Instruct, aligned through reinforcement learning from AI feedback (RLAIF) with direct preference optimization (DPO) using CodeUltraFeedback's AI feedback data, outperforms 34B LLMs on CODAL-Bench, validating the utility of CodeUltraFeedback for preference tuning. Furthermore, we show our DPO-aligned CodeLlama model improves functional correctness on HumanEval+ compared to the unaligned base model. Therefore, our contributions bridge the gap in preference tuning of LLMs for code and set the stage for further advancements in model alignment and RLAIF for code intelligence. Our code and data are available at //github.com/martin-wey/CodeUltraFeedback.

Dependabot, a popular dependency management tool, includes a compatibility score feature that helps client packages assess the risk of accepting a dependency update by leveraging knowledge from "the crowd". For each dependency update, Dependabot calculates this compatibility score as the proportion of successful updates performed by other client packages that use the same provider package as a dependency. In this paper, we study the efficacy of the compatibility score to help client packages assess the risks involved with accepting a dependency update. We analyze 579,206 pull requests opened by Dependabot to update a dependency, along with 618,045 compatibility score records calculated by Dependabot. We find that a compatibility score cannot be calculated for 83% of the dependency updates due to the lack of data from the crowd. Yet, the vast majority of the scores that can be calculated have a small confidence interval and are based on low-quality data, suggesting that client packages should have additional angles to evaluate the risk of an update and the trustworthiness of the compatibility score. To overcome these limitations, we propose metrics that amplify the input from the crowd and demonstrate the ability of those metrics to predict the acceptance of a successful update by client packages. We also demonstrate that historical update metrics from client packages can be used to provide a more personalized compatibility score. Based on our findings, we argue that, when leveraging the crowd, dependency management bots should include a confidence interval to help calibrate the trust clients can place in the compatibility score, and consider the quality of tests that exercise candidate updates.

Recently, sign-aware graph recommendation has drawn much attention as it will learn users' negative preferences besides positive ones from both positive and negative interactions (i.e., links in a graph) with items. To accommodate the different semantics of negative and positive links, existing works utilize two independent encoders to model users' positive and negative preferences, respectively. However, these approaches cannot learn the negative preferences from high-order heterogeneous interactions between users and items formed by multiple links with different signs, resulting in inaccurate and incomplete negative user preferences. To cope with these intractable issues, we propose a novel \textbf{L}ight \textbf{S}igned \textbf{G}raph Convolution Network specifically for \textbf{Rec}ommendation (\textbf{LSGRec}), which adopts a unified modeling approach to simultaneously model high-order users' positive and negative preferences on a signed user-item interaction graph. Specifically, for the negative preferences within high-order heterogeneous interactions, first-order negative preferences are captured by the negative links, while high-order negative preferences are propagated along positive edges. Then, recommendation results are generated based on positive preferences and optimized with negative ones. Finally, we train representations of users and items through different auxiliary tasks. Extensive experiments on three real-world datasets demonstrate that our method outperforms existing baselines regarding performance and computational efficiency. Our code is available at \url{//anonymous.4open.science/r/LSGRec-BB95}.

Advances in ubiquitous computing have enabled end-user authoring of context-aware policies (CAPs) that control smart devices based on specific contexts of the user and environment. However, authoring CAPs accurately and avoiding run-time errors is challenging for end-users as it is difficult to foresee CAP behaviors under complex real-world conditions. We propose Fast-Forward Reality, an Extended Reality (XR) based authoring workflow that enables end-users to iteratively author and refine CAPs by validating their behaviors via simulated unit test cases. We develop a computational approach to automatically generate test cases based on the authored CAP and the user's context history. Our system delivers each test case with immersive visualizations in XR, facilitating users to verify the CAP behavior and identify necessary refinements. We evaluated Fast-Forward Reality in a user study (N=12). Our authoring and validation process improved the accuracy of CAPs and the users provided positive feedback on the system usability.

In pace with developments in the research field of artificial intelligence, knowledge graphs (KGs) have attracted a surge of interest from both academia and industry. As a representation of semantic relations between entities, KGs have proven to be particularly relevant for natural language processing (NLP), experiencing a rapid spread and wide adoption within recent years. Given the increasing amount of research work in this area, several KG-related approaches have been surveyed in the NLP research community. However, a comprehensive study that categorizes established topics and reviews the maturity of individual research streams remains absent to this day. Contributing to closing this gap, we systematically analyzed 507 papers from the literature on KGs in NLP. Our survey encompasses a multifaceted review of tasks, research types, and contributions. As a result, we present a structured overview of the research landscape, provide a taxonomy of tasks, summarize our findings, and highlight directions for future work.

Existing recommender systems extract the user preference based on learning the correlation in data, such as behavioral correlation in collaborative filtering, feature-feature, or feature-behavior correlation in click-through rate prediction. However, regretfully, the real world is driven by causality rather than correlation, and correlation does not imply causation. For example, the recommender systems can recommend a battery charger to a user after buying a phone, in which the latter can serve as the cause of the former, and such a causal relation cannot be reversed. Recently, to address it, researchers in recommender systems have begun to utilize causal inference to extract causality, enhancing the recommender system. In this survey, we comprehensively review the literature on causal inference-based recommendation. At first, we present the fundamental concepts of both recommendation and causal inference as the basis of later content. We raise the typical issues that the non-causality recommendation is faced. Afterward, we comprehensively review the existing work of causal inference-based recommendation, based on a taxonomy of what kind of problem causal inference addresses. Last, we discuss the open problems in this important research area, along with interesting future works.

Autonomic computing investigates how systems can achieve (user) specified control outcomes on their own, without the intervention of a human operator. Autonomic computing fundamentals have been substantially influenced by those of control theory for closed and open-loop systems. In practice, complex systems may exhibit a number of concurrent and inter-dependent control loops. Despite research into autonomic models for managing computer resources, ranging from individual resources (e.g., web servers) to a resource ensemble (e.g., multiple resources within a data center), research into integrating Artificial Intelligence (AI) and Machine Learning (ML) to improve resource autonomy and performance at scale continues to be a fundamental challenge. The integration of AI/ML to achieve such autonomic and self-management of systems can be achieved at different levels of granularity, from full to human-in-the-loop automation. In this article, leading academics, researchers, practitioners, engineers, and scientists in the fields of cloud computing, AI/ML, and quantum computing join to discuss current research and potential future directions for these fields. Further, we discuss challenges and opportunities for leveraging AI and ML in next generation computing for emerging computing paradigms, including cloud, fog, edge, serverless and quantum computing environments.

Recommender systems exploit interaction history to estimate user preference, having been heavily used in a wide range of industry applications. However, static recommendation models are difficult to answer two important questions well due to inherent shortcomings: (a) What exactly does a user like? (b) Why does a user like an item? The shortcomings are due to the way that static models learn user preference, i.e., without explicit instructions and active feedback from users. The recent rise of conversational recommender systems (CRSs) changes this situation fundamentally. In a CRS, users and the system can dynamically communicate through natural language interactions, which provide unprecedented opportunities to explicitly obtain the exact preference of users. Considerable efforts, spread across disparate settings and applications, have been put into developing CRSs. Existing models, technologies, and evaluation methods for CRSs are far from mature. In this paper, we provide a systematic review of the techniques used in current CRSs. We summarize the key challenges of developing CRSs into five directions: (1) Question-based user preference elicitation. (2) Multi-turn conversational recommendation strategies. (3) Dialogue understanding and generation. (4) Exploitation-exploration trade-offs. (5) Evaluation and user simulation. These research directions involve multiple research fields like information retrieval (IR), natural language processing (NLP), and human-computer interaction (HCI). Based on these research directions, we discuss some future challenges and opportunities. We provide a road map for researchers from multiple communities to get started in this area. We hope this survey helps to identify and address challenges in CRSs and inspire future research.

Automatic image captioning has recently approached human-level performance due to the latest advances in computer vision and natural language understanding. However, most of the current models can only generate plain factual descriptions about the content of a given image. However, for human beings, image caption writing is quite flexible and diverse, where additional language dimensions, such as emotion, humor and language styles, are often incorporated to produce diverse, emotional, or appealing captions. In particular, we are interested in generating sentiment-conveying image descriptions, which has received little attention. The main challenge is how to effectively inject sentiments into the generated captions without altering the semantic matching between the visual content and the generated descriptions. In this work, we propose two different models, which employ different schemes for injecting sentiments into image captions. Compared with the few existing approaches, the proposed models are much simpler and yet more effective. The experimental results show that our model outperform the state-of-the-art models in generating sentimental (i.e., sentiment-bearing) image captions. In addition, we can also easily manipulate the model by assigning different sentiments to the testing image to generate captions with the corresponding sentiments.

北京阿比特科技有限公司