亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Distribution testing is a fundamental statistical task with many applications, but we are interested in a variety of problems where systematic mislabelings of the sample prevent us from applying the existing theory. To apply distribution testing to these problems, we introduce distribution testing under the parity trace, where the algorithm receives an ordered sample $S$ that reveals only the least significant bit of each element. This abstraction reveals connections between the following three problems of interest, allowing new upper and lower bounds: 1. In distribution testing with a confused collector, the collector of the sample may be incapable of distinguishing between nearby elements of a domain (e.g. a machine learning classifier). We prove bounds for distribution testing with a confused collector on domains structured as a cycle or a path. 2. Recent work on the fundamental testing vs. learning question established tight lower bounds on distribution-free sample-based property testing by reduction from distribution testing, but the tightness is limited to symmetric properties. The parity trace allows a broader family of equivalences to non-symmetric properties, while recovering and strengthening many of the previous results with a different technique. 3. We give the first results for property testing in the well-studied trace reconstruction model, where the goal is to test whether an unknown string $x$ satisfies some property or is far from satisfying that property, given only independent random traces of $x$. Our main technical result is a tight bound of $\widetilde \Theta\left((n/\epsilon)^{4/5} + \sqrt n/\epsilon^2\right)$ for testing uniformity of distributions over $[n]$ under the parity trace, leading also to results for the problems above.

相關內容

Given an undirected graph $G$ and a conductance parameter $\alpha$, the problem of testing whether $G$ has conductance at least $\alpha$ or is far from having conductance at least $\Omega(\alpha^2)$ has been extensively studied for bounded-degree graphs in the classic property testing model. In the last few years, the same problem has also been addressed in non-sequential models of computing such as MPC and distributed CONGEST. However, all the algorithms in these models like their classic counterparts apply an aggregate function over some statistics pertaining to a set of random walks on $G$ as a test criteria. The only distributed CONGEST algorithm for the problem by~\cite{VasudevDistributed} tests conductance of the underlying network in the unbounded degree graph model. Their algorithm builds a rooted spanning tree of the underlying network to collect information at the root and then applies an aggregate function to this information. We ask the question whether the parallelism offered by distributed computing can be exploited to avoid information collection and answer it in affirmative. We propose a new algorithm which also performs a set of random walks on $G$ but does not collect any statistic at a central node. In fact, we show that for an appropriate statistic, each node has sufficient information to decide on its own whether to accept or not. Given an $n$-vertex, $m$-edge undirected, unweighted graph $G$, a conductance parameter $\alpha$, and a distance parameter $\epsilon$, our distributed conductance tester accepts $G$ if $G$ has conductance at least $\alpha$ and rejects $G$ if $G$ is $\epsilon$-far from having conductance $\Omega(\alpha^2)$ and does so in $O(\log n)$ rounds of communication. Unlike the algorithm of \cite{VasudevDistributed}, our algorithm does not rely on the wasteful construction of a spanning tree and information accumulation at its root.

Diversification of recommendation results is a promising approach for coping with the uncertainty associated with users' information needs. Of particular importance in diversified recommendation is to define and optimize an appropriate diversity objective. In this study, we revisit the most popular diversity objective called intra-list distance (ILD), defined as the average pairwise distance between selected items, and a similar but lesser known objective called dispersion, which is the minimum pairwise distance. Owing to their simplicity and flexibility, ILD and dispersion have been used in a plethora of diversified recommendation research. Nevertheless, we do not actually know what kind of items are preferred by them. We present a critical reexamination of ILD and dispersion from theoretical and experimental perspectives. Our theoretical results reveal that these objectives have potential drawbacks: ILD may select duplicate items that are very close to each other, whereas dispersion may overlook distant item pairs. As a competitor to ILD and dispersion, we design a diversity objective called Gaussian ILD, which can interpolate between ILD and dispersion by tuning the bandwidth parameter. We verify our theoretical results by experimental results using real-world data and confirm the extreme behavior of ILD and dispersion in practice.

This paper tackles the problem of missing data imputation for noisy and non-Gaussian data. A classical imputation method, the Expectation Maximization (EM) algorithm for Gaussian mixture models, has shown interesting properties when compared to other popular approaches such as those based on k-nearest neighbors or on multiple imputations by chained equations. However, Gaussian mixture models are known to be non-robust to heterogeneous data, which can lead to poor estimation performance when the data is contaminated by outliers or follows non-Gaussian distributions. To overcome this issue, a new EM algorithm is investigated for mixtures of elliptical distributions with the property of handling potential missing data. This paper shows that this problem reduces to the estimation of a mixture of Angular Gaussian distributions under generic assumptions (i.e., each sample is drawn from a mixture of elliptical distributions, which is possibly different for one sample to another). In that case, the complete-data likelihood associated with mixtures of elliptical distributions is well adapted to the EM framework with missing data thanks to its conditional distribution, which is shown to be a multivariate $t$-distribution. Experimental results on synthetic data demonstrate that the proposed algorithm is robust to outliers and can be used with non-Gaussian data. Furthermore, experiments conducted on real-world datasets show that this algorithm is very competitive when compared to other classical imputation methods.

In recent years, there has been a significant growth in research focusing on minimum $\ell_2$ norm (ridgeless) interpolation least squares estimators. However, the majority of these analyses have been limited to a simple regression error structure, assuming independent and identically distributed errors with zero mean and common variance, independent of the feature vectors. Additionally, the main focus of these theoretical analyses has been on the out-of-sample prediction risk. This paper breaks away from the existing literature by examining the mean squared error of the ridgeless interpolation least squares estimator, allowing for more general assumptions about the regression errors. Specifically, we investigate the potential benefits of overparameterization by characterizing the mean squared error in a finite sample. Our findings reveal that including a large number of unimportant parameters relative to the sample size can effectively reduce the mean squared error of the estimator. Notably, we establish that the estimation difficulties associated with the variance term can be summarized through the trace of the variance-covariance matrix of the regression errors.

This paper studies the open problem of conformalized entry prediction in a row/column-exchangeable matrix. The matrix setting presents novel and unique challenges, but there exists little work on this interesting topic. We meticulously define the problem, differentiate it from closely related problems, and rigorously delineate the boundary between achievable and impossible goals. We then propose two practical algorithms. The first method provides a fast emulation of the full conformal prediction, while the second method leverages the technique of algorithmic stability for acceleration. Both methods are computationally efficient and can effectively safeguard coverage validity in presence of arbitrary missing pattern. Further, we quantify the impact of missingness on prediction accuracy and establish fundamental limit results. Empirical evidence from synthetic and real-world data sets corroborates the superior performance of our proposed methods.

The problem of reducing a Hidden Markov Model (HMM) to one of smaller dimension that exactly reproduces the same marginals is tackled by using a system-theoretic approach. Realization theory tools are extended to HMMs by leveraging suitable algebraic representations of probability spaces. We propose two algorithms that return coarse-grained equivalent HMMs obtained by stochastic projection operators: the first returns models that exactly reproduce the single-time distribution of a given output process, while in the second the full (multi-time) distribution is preserved. The reduction method exploits not only the structure of the observed output, but also its initial condition, whenever the latter is known or belongs to a given subclass. Optimal algorithms are derived for a class of HMM, namely observable ones.

Many numerical problems with input $x$ and output $y$ can be formulated as an system of equations $F(x, y) = 0$ where the goal is to solve for $y$. The condition number measures the change of $y$ for small perturbations to $x$. From this numerical problem, one can derive a (typically underdetermined) subproblem by omitting any number of constraints from $F$. We propose a condition number for underdetermined systems that relates the condition number of a numerical problem to those of its subproblems. We illustrate the use of our technique by computing the condition of two problems that do not have a finite condition number in the classic sense: any two-factor matrix decompositions and Tucker decompositions.

Directional beamforming will play a paramount role in 5G and beyond networks in order to combat the higher path losses incurred at millimeter wave bands. Appropriate modeling and analysis of the angles and distances between transmitters and receivers in these networks are thus essential to understand performance and limiting factors. Most existing literature considers either infinite and uniform networks, where nodes are drawn according to a Poisson point process, or finite networks with the reference receiver placed at the origin of a disk. Under either of these assumptions, the distance and azimuth angle between transmitter and receiver are independent, and the angle follows a uniform distribution between $0$ and $2\pi$. Here, we consider a more realistic case of finite networks where the reference node is placed at any arbitrary location. We obtain the joint distribution between the distance and azimuth angle and demonstrate that these random variables do exhibit certain correlation, which depends on the shape of the region and the location of the reference node. To conduct the analysis, we present a general mathematical framework which is specialized to exemplify the case of a rectangular region. We then also derive the statistics for the 3D case where, considering antenna heights, the joint distribution of distance, azimuth and zenith angles is obtained. Finally, we describe some immediate applications of the present work, including the analysis of directional beamforming, the design of analog codebooks and wireless routing algorithms.

Out-of-distribution (OOD) detection is critical to ensuring the reliability and safety of machine learning systems. For instance, in autonomous driving, we would like the driving system to issue an alert and hand over the control to humans when it detects unusual scenes or objects that it has never seen before and cannot make a safe decision. This problem first emerged in 2017 and since then has received increasing attention from the research community, leading to a plethora of methods developed, ranging from classification-based to density-based to distance-based ones. Meanwhile, several other problems are closely related to OOD detection in terms of motivation and methodology. These include anomaly detection (AD), novelty detection (ND), open set recognition (OSR), and outlier detection (OD). Despite having different definitions and problem settings, these problems often confuse readers and practitioners, and as a result, some existing studies misuse terms. In this survey, we first present a generic framework called generalized OOD detection, which encompasses the five aforementioned problems, i.e., AD, ND, OSR, OOD detection, and OD. Under our framework, these five problems can be seen as special cases or sub-tasks, and are easier to distinguish. Then, we conduct a thorough review of each of the five areas by summarizing their recent technical developments. We conclude this survey with open challenges and potential research directions.

Classic machine learning methods are built on the $i.i.d.$ assumption that training and testing data are independent and identically distributed. However, in real scenarios, the $i.i.d.$ assumption can hardly be satisfied, rendering the sharp drop of classic machine learning algorithms' performances under distributional shifts, which indicates the significance of investigating the Out-of-Distribution generalization problem. Out-of-Distribution (OOD) generalization problem addresses the challenging setting where the testing distribution is unknown and different from the training. This paper serves as the first effort to systematically and comprehensively discuss the OOD generalization problem, from the definition, methodology, evaluation to the implications and future directions. Firstly, we provide the formal definition of the OOD generalization problem. Secondly, existing methods are categorized into three parts based on their positions in the whole learning pipeline, namely unsupervised representation learning, supervised model learning and optimization, and typical methods for each category are discussed in detail. We then demonstrate the theoretical connections of different categories, and introduce the commonly used datasets and evaluation metrics. Finally, we summarize the whole literature and raise some future directions for OOD generalization problem. The summary of OOD generalization methods reviewed in this survey can be found at //out-of-distribution-generalization.com.

北京阿比特科技有限公司