亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

The security and privacy of refugee communities have emerged as pressing concerns in the context of increasing global migration. The Rohingya refugees are a stateless Muslim minority group in Myanmar who were forced to flee their homes after conflict broke out, with many fleeing to neighbouring countries and ending up in refugee camps, such as in Bangladesh. However, others migrated to Malaysia and those who arrive there live within the community as urban refugees. However, the Rohingya in Malaysia are not legally recognized and have limited and restricted access to public resources such as healthcare and education. This means they face security and privacy challenges, different to other refugee groups, which are often compounded by this lack of recognition, social isolation and lack of access to vital resources. This paper discusses the implications of security and privacy of the Rohingya refugees, focusing on available and accessible technological assistance, uncovering the heightened need for a human-centered approach to design and implementation of solutions that factor in these requirements. Overall, the discussions and findings presented in this paper on the security and privacy of the Rohingya provides a valuable resource for researchers, practitioners and policymakers in the wider HCI community.

相關內容

安全是在人類生產過程中,將系統的運行狀態對人類的生命、財產、環境可能產生的損害控制在人類能接受水平以下的狀態。 隱私是一種與公共利益、群體利益無關,當事人不愿他人知道或他人不便知道的個人信息,(只能公開于有保密義務的人)當事人不愿他人干涉或他人不便干涉的個人私事,以及當事人不愿他人侵入或他人不便侵入的個人領域。隱私是個人的自然權利。

Trustworthy answer content is abundant in many high-resource languages and is instantly accessible through question answering systems, yet this content can be hard to access for those that do not speak these languages. The leap forward in cross-lingual modeling quality offered by generative language models offers much promise, yet their raw generations often fall short in factuality. To improve trustworthiness in these systems, a promising direction is to attribute the answer to a retrieved source, possibly in a content-rich language different from the query. Our work is the first to study attribution for cross-lingual question answering. First, we collect data in 5 languages to assess the attribution level of a state-of-the-art cross-lingual QA system. To our surprise, we find that a substantial portion of the answers is not attributable to any retrieved passages (up to 50% of answers exactly matching a gold reference) despite the system being able to attend directly to the retrieved text. Second, to address this poor attribution level, we experiment with a wide range of attribution detection techniques. We find that Natural Language Inference models and PaLM 2 fine-tuned on a very small amount of attribution data can accurately detect attribution. Based on these models, we improve the attribution level of a cross-lingual question-answering system. Overall, we show that current academic generative cross-lingual QA systems have substantial shortcomings in attribution and we build tooling to mitigate these issues.

As users shift from interacting actively with devices with screens to interacting seamlessly with smart environments, novel models of user authentication will be needed to maintain the security and privacy of user data. To understand users' attitudes toward new models of authentication (e.g., voice recognition), we surveyed 117 Amazon Turk workers and 43 computer science students about their authentication preferences, in contexts when others are present and different usability metrics. Our users placed less trust in natural authentication modalities (e.g., body gestures) than traditional modalities (e.g., passwords) due to concerns about accuracy or security. Users were also not as willing to use natural authentication modalities except in the presence of people they trust due to risk of exposure and feelings of awkwardness. We discuss the implications for designing natural multimodal authentication and explore the design space around users' current mental models for the future of secure and usable smart technology.

An important milestone for AI is the development of algorithms that can produce drawings that are indistinguishable from those of humans. Here, we adapt the 'diversity vs. recognizability' scoring framework from Boutin et al, 2022 and find that one-shot diffusion models have indeed started to close the gap between humans and machines. However, using a finer-grained measure of the originality of individual samples, we show that strengthening the guidance of diffusion models helps improve the humanness of their drawings, but they still fall short of approximating the originality and recognizability of human drawings. Comparing human category diagnostic features, collected through an online psychophysics experiment, against those derived from diffusion models reveals that humans rely on fewer and more localized features. Overall, our study suggests that diffusion models have significantly helped improve the quality of machine-generated drawings; however, a gap between humans and machines remains -- in part explainable by discrepancies in visual strategies.

In multilingual societies, social conversations often involve code-mixed speech. The current speech technology may not be well equipped to extract information from multi-lingual multi-speaker conversations. The DISPLACE challenge entails a first-of-kind task to benchmark speaker and language diarization on the same data, as the data contains multi-speaker conversations in multilingual code-mixed speech. The challenge attempts to highlight outstanding issues in speaker diarization (SD) in multilingual settings with code-mixing. Further, language diarization (LD) in multi-speaker settings also introduces new challenges, where the system has to disambiguate speaker switches with code switches. For this challenge, a natural multilingual, multi-speaker conversational dataset is distributed for development and evaluation purposes. The systems are evaluated on single-channel far-field recordings. We also release a baseline system and report the highlights of the system submissions.

Recently, Meta AI Research approaches a general, promptable Segment Anything Model (SAM) pre-trained on an unprecedentedly large segmentation dataset (SA-1B). Without a doubt, the emergence of SAM will yield significant benefits for a wide array of practical image segmentation applications. In this study, we conduct a series of intriguing investigations into the performance of SAM across various applications, particularly in the fields of natural images, agriculture, manufacturing, remote sensing, and healthcare. We analyze and discuss the benefits and limitations of SAM, while also presenting an outlook on its future development in segmentation tasks. By doing so, we aim to give a comprehensive understanding of SAM's practical applications. This work is expected to provide insights that facilitate future research activities toward generic segmentation. Source code is publicly available.

Social determinants of health (SDOH) -- the conditions in which people live, grow, and age -- play a crucial role in a person's health and well-being. There is a large, compelling body of evidence in population health studies showing that a wide range of SDOH is strongly correlated with health outcomes. Yet, a majority of the risk prediction models based on electronic health records (EHR) do not incorporate a comprehensive set of SDOH features as they are often noisy or simply unavailable. Our work links a publicly available EHR database, MIMIC-IV, to well-documented SDOH features. We investigate the impact of such features on common EHR prediction tasks across different patient populations. We find that community-level SDOH features do not improve model performance for a general patient population, but can improve data-limited model fairness for specific subpopulations. We also demonstrate that SDOH features are vital for conducting thorough audits of algorithmic biases beyond protective attributes. We hope the new integrated EHR-SDOH database will enable studies on the relationship between community health and individual outcomes and provide new benchmarks to study algorithmic biases beyond race, gender, and age.

The war in Ukraine seems to have positively changed the attitude toward the critical societal topic of migration in Europe -- at least towards refugees from Ukraine. We investigate whether this impression is substantiated by how the topic is reflected in online news and social media, thus linking the representation of the issue on the Web to its perception in society. For this purpose, we combine and adapt leading-edge automatic text processing for a novel multilingual stance detection approach. Starting from 5.5M Twitter posts published by 565 European news outlets in one year, beginning September 2021, plus replies, we perform a multilingual analysis of migration-related media coverage and associated social media interaction for Europe and selected European countries. The results of our analysis show that there is actually a reframing of the discussion illustrated by the terminology change, e.g., from "migrant" to "refugee", often even accentuated with phrases such as "real refugees". However, concerning a stance shift in public perception, the picture is more diverse than expected. All analyzed cases show a noticeable temporal stance shift around the start of the war in Ukraine. Still, there are apparent national differences in the size and stability of this shift.

Trust has emerged as a key factor in people's interactions with AI-infused systems. Yet, little is known about what models of trust have been used and for what systems: robots, virtual characters, smart vehicles, decision aids, or others. Moreover, there is yet no known standard approach to measuring trust in AI. This scoping review maps out the state of affairs on trust in human-AI interaction (HAII) from the perspectives of models, measures, and methods. Findings suggest that trust is an important and multi-faceted topic of study within HAII contexts. However, most work is under-theorized and under-reported, generally not using established trust models and missing details about methods, especially Wizard of Oz. We offer several targets for systematic review work as well as a research agenda for combining the strengths and addressing the weaknesses of the current literature.

Australia is a leading AI nation with strong allies and partnerships. Australia has prioritised robotics, AI, and autonomous systems to develop sovereign capability for the military. Australia commits to Article 36 reviews of all new means and methods of warfare to ensure weapons and weapons systems are operated within acceptable systems of control. Additionally, Australia has undergone significant reviews of the risks of AI to human rights and within intelligence organisations and has committed to producing ethics guidelines and frameworks in Security and Defence. Australia is committed to OECD's values-based principles for the responsible stewardship of trustworthy AI as well as adopting a set of National AI ethics principles. While Australia has not adopted an AI governance framework specifically for Defence; Defence Science has published 'A Method for Ethical AI in Defence' (MEAID) technical report which includes a framework and pragmatic tools for managing ethical and legal risks for military applications of AI.

Human-in-the-loop aims to train an accurate prediction model with minimum cost by integrating human knowledge and experience. Humans can provide training data for machine learning applications and directly accomplish some tasks that are hard for computers in the pipeline with the help of machine-based approaches. In this paper, we survey existing works on human-in-the-loop from a data perspective and classify them into three categories with a progressive relationship: (1) the work of improving model performance from data processing, (2) the work of improving model performance through interventional model training, and (3) the design of the system independent human-in-the-loop. Using the above categorization, we summarize major approaches in the field, along with their technical strengths/ weaknesses, we have simple classification and discussion in natural language processing, computer vision, and others. Besides, we provide some open challenges and opportunities. This survey intends to provide a high-level summarization for human-in-the-loop and motivates interested readers to consider approaches for designing effective human-in-the-loop solutions.

北京阿比特科技有限公司