亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Survival analysis, or time-to-event analysis, is an important and widespread problem in healthcare research. Medical research has traditionally relied on Cox models for survival analysis, due to their simplicity and interpretability. Cox models assume a log-linear hazard function as well as proportional hazards over time, and can perform poorly when these assumptions fail. Newer survival models based on machine learning avoid these assumptions and offer improved accuracy, yet sometimes at the expense of model interpretability, which is vital for clinical use. We propose a novel survival analysis pipeline that is both interpretable and competitive with state-of-the-art survival models. Specifically, we use an improved version of survival stacking to transform a survival analysis problem to a classification problem, ControlBurn to perform feature selection, and Explainable Boosting Machines to generate interpretable predictions. To evaluate our pipeline, we predict risk of heart failure using a large-scale EHR database. Our pipeline achieves state-of-the-art performance and provides interesting and novel insights about risk factors for heart failure.

相關內容

In modern days, the ability to carry out computations in parallel is key to efficient implementations of computationally intensive algorithms. This paper investigates the applicability of the previously proposed Augmented Island Resampling Particle Filter (AIRPF) -- an algorithm designed for parallel implementations -- to particle Markov Chain Monte Carlo (PMCMC). We show that AIRPF produces a non-negative unbiased estimator of the marginal likelihood and hence is suitable for PMCMC. We also prove stability properties, similar to those of the $\alpha$SMC algorithm, for AIRPF. This implies that the error of AIRPF can be bounded uniformly in time by controlling the effective number of filters, which in turn can be done by adaptively constraining the interactions between filters. We demonstrate the superiority of AIRPF over independent Bootstrap Particle Filters, not only numerically, but also theoretically. To this end, we extend the previously proposed collision analysis approach to derive an explicit expression for the variance of the marginal likelihood estimate. This expression admits exact evaluation of the variance in some simple scenarios as we shall also demonstrate.

Visual Question Answering (VQA) based on multi-modal data facilitates real-life applications such as home robots and medical diagnoses. One significant challenge is to devise a robust decentralized learning framework for various client models where centralized data collection is refrained due to confidentiality concerns. This work aims to tackle privacy-preserving VQA by decoupling a multi-modal model into representation modules and a contrastive module and leveraging inter-module gradients sharing and inter-client weight sharing. To this end, we propose Bidirectional Contrastive Split Learning (BiCSL) to train a global multi-modal model on the entire data distribution of decentralized clients. We employ the contrastive loss that enables a more efficient self-supervised learning of decentralized modules. Comprehensive experiments are conducted on the VQA-v2 dataset based on five SOTA VQA models, demonstrating the effectiveness of the proposed method. Furthermore, we inspect BiCSL's robustness against a dual-key backdoor attack on VQA. Consequently, BiCSL shows much better robustness to the multi-modal adversarial attack compared to the centralized learning method, which provides a promising approach to decentralized multi-modal learning.

Synthesising verifiably correct controllers for dynamical systems is crucial for safety-critical problems. To achieve this, it is important to account for uncertainty in a robust manner, while at the same time it is often of interest to avoid being overly conservative with the view of achieving a better cost. We propose a method for verifiably safe policy synthesis for a class of finite state models, under the presence of structural uncertainty. In particular, we consider uncertain parametric Markov decision processes (upMDPs), a special class of Markov decision processes, with parameterised transition functions, where such parameters are drawn from a (potentially) unknown distribution. Our framework leverages recent advancements in the so-called scenario approach theory, where we represent the uncertainty by means of scenarios, and provide guarantees on synthesised policies satisfying probabilistic computation tree logic (PCTL) formulae. We consider several common benchmarks/problems and compare our work to recent developments for verifying upMDPs.

Backpropagation algorithm has been widely used as a mainstream learning procedure for neural networks in the past decade, and has played a significant role in the development of deep learning. However, there exist some limitations associated with this algorithm, such as getting stuck in local minima and experiencing vanishing/exploding gradients, which have led to questions about its biological plausibility. To address these limitations, alternative algorithms to backpropagation have been preliminarily explored, with the Forward-Forward (FF) algorithm being one of the most well-known. In this paper we propose a new learning framework for neural networks, namely Cascaded Forward (CaFo) algorithm, which does not rely on BP optimization as that in FF. Unlike FF, our framework directly outputs label distributions at each cascaded block, which does not require generation of additional negative samples and thus leads to a more efficient process at both training and testing. Moreover, in our framework each block can be trained independently, so it can be easily deployed into parallel acceleration systems. The proposed method is evaluated on four public image classification benchmarks, and the experimental results illustrate significant improvement in prediction accuracy in comparison with the baseline.

Without a credible control group, the most widespread methodologies for estimating causal effects cannot be applied. To fill this gap, we propose the Machine Learning Control Method (MLCM), a new approach for causal panel analysis based on counterfactual forecasting with machine learning. The MLCM estimates policy-relevant causal parameters in short- and long-panel settings without relying on untreated units. We formalize identification in the potential outcomes framework and then provide estimation based on supervised machine learning algorithms. To illustrate the advantages of our estimator, we present simulation evidence and an empirical application on the impact of the COVID-19 crisis on educational inequality in Italy. We implement the proposed method in the companion R package MachineControl.

Neural networks efficiently encode learned information within their parameters. Consequently, many tasks can be unified by treating neural networks themselves as input data. When doing so, recent studies demonstrated the importance of accounting for the symmetries and geometry of parameter spaces. However, those works developed architectures tailored to specific networks such as MLPs and CNNs without normalization layers, and generalizing such architectures to other types of networks can be challenging. In this work, we overcome these challenges by building new metanetworks - neural networks that take weights from other neural networks as input. Put simply, we carefully build graphs representing the input neural networks and process the graphs using graph neural networks. Our approach, Graph Metanetworks (GMNs), generalizes to neural architectures where competing methods struggle, such as multi-head attention layers, normalization layers, convolutional layers, ResNet blocks, and group-equivariant linear layers. We prove that GMNs are expressive and equivariant to parameter permutation symmetries that leave the input neural network functions unchanged. We validate the effectiveness of our method on several metanetwork tasks over diverse neural network architectures.

The adaptive processing of structured data is a long-standing research topic in machine learning that investigates how to automatically learn a mapping from a structured input to outputs of various nature. Recently, there has been an increasing interest in the adaptive processing of graphs, which led to the development of different neural network-based methodologies. In this thesis, we take a different route and develop a Bayesian Deep Learning framework for graph learning. The dissertation begins with a review of the principles over which most of the methods in the field are built, followed by a study on graph classification reproducibility issues. We then proceed to bridge the basic ideas of deep learning for graphs with the Bayesian world, by building our deep architectures in an incremental fashion. This framework allows us to consider graphs with discrete and continuous edge features, producing unsupervised embeddings rich enough to reach the state of the art on several classification tasks. Our approach is also amenable to a Bayesian nonparametric extension that automatizes the choice of almost all model's hyper-parameters. Two real-world applications demonstrate the efficacy of deep learning for graphs. The first concerns the prediction of information-theoretic quantities for molecular simulations with supervised neural models. After that, we exploit our Bayesian models to solve a malware-classification task while being robust to intra-procedural code obfuscation techniques. We conclude the dissertation with an attempt to blend the best of the neural and Bayesian worlds together. The resulting hybrid model is able to predict multimodal distributions conditioned on input graphs, with the consequent ability to model stochasticity and uncertainty better than most works. Overall, we aim to provide a Bayesian perspective into the articulated research field of deep learning for graphs.

Graph neural networks (GNNs) are a popular class of machine learning models whose major advantage is their ability to incorporate a sparse and discrete dependency structure between data points. Unfortunately, GNNs can only be used when such a graph-structure is available. In practice, however, real-world graphs are often noisy and incomplete or might not be available at all. With this work, we propose to jointly learn the graph structure and the parameters of graph convolutional networks (GCNs) by approximately solving a bilevel program that learns a discrete probability distribution on the edges of the graph. This allows one to apply GCNs not only in scenarios where the given graph is incomplete or corrupted but also in those where a graph is not available. We conduct a series of experiments that analyze the behavior of the proposed method and demonstrate that it outperforms related methods by a significant margin.

Aspect based sentiment analysis (ABSA) can provide more detailed information than general sentiment analysis, because it aims to predict the sentiment polarities of the given aspects or entities in text. We summarize previous approaches into two subtasks: aspect-category sentiment analysis (ACSA) and aspect-term sentiment analysis (ATSA). Most previous approaches employ long short-term memory and attention mechanisms to predict the sentiment polarity of the concerned targets, which are often complicated and need more training time. We propose a model based on convolutional neural networks and gating mechanisms, which is more accurate and efficient. First, the novel Gated Tanh-ReLU Units can selectively output the sentiment features according to the given aspect or entity. The architecture is much simpler than attention layer used in the existing models. Second, the computations of our model could be easily parallelized during training, because convolutional layers do not have time dependency as in LSTM layers, and gating units also work independently. The experiments on SemEval datasets demonstrate the efficiency and effectiveness of our models.

Multi-relation Question Answering is a challenging task, due to the requirement of elaborated analysis on questions and reasoning over multiple fact triples in knowledge base. In this paper, we present a novel model called Interpretable Reasoning Network that employs an interpretable, hop-by-hop reasoning process for question answering. The model dynamically decides which part of an input question should be analyzed at each hop; predicts a relation that corresponds to the current parsed results; utilizes the predicted relation to update the question representation and the state of the reasoning process; and then drives the next-hop reasoning. Experiments show that our model yields state-of-the-art results on two datasets. More interestingly, the model can offer traceable and observable intermediate predictions for reasoning analysis and failure diagnosis.

北京阿比特科技有限公司