亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

We present a monolithic finite element formulation for (nonlinear) fluid-structure interaction in Eulerian coordinates. For the discretization we employ an unfitted finite element method based on inf-sup stable finite elements. So-called ghost penalty terms are used to guarantee the robustness of the approach independently of the way the interface cuts the finite element mesh. The resulting system is solved in a monolithic fashion using Newton's method. Our developments are tested on a numerical example with fixed interface.

相關內容

IFIP TC13 Conference on Human-Computer Interaction是人機交互領域的研究者和實踐者展示其工作的重要平臺。多年來,這些會議吸引了來自幾個國家和文化的研究人員。官網鏈接: · 二項檢驗 · 成比例 · 確切的 · 縮放 ·
2024 年 3 月 14 日

In many circumstances given an ordered sequence of one or more types of elements/ symbols, the objective is to determine any existence of randomness in occurrence of one of the elements,say type 1 element. Such a method can be useful in determining existence of any non-random pattern in the wins or loses of a player in a series of games played. Existing methods of tests based on total number of runs or tests based on length of longest run (Mosteller (1941)) can be used for testing the null hypothesis of randomness in the entire sequence, and not a specific type of element. Additionally, the Runs Test tends to show results contradictory to the intuition visualised by the graphs of say, win proportions over time due to method used in computation of runs. This paper develops a test approach to address this problem by computing the gaps between two consecutive type 1 elements and thereafter following the idea of "pattern" in occurrence and "directional" trend (increasing, decreasing or constant), employs the use of exact Binomial test, Kenall's Tau and Siegel-Tukey test for scale problem. Further modifications suggested by Jan Vegelius(1982) have been applied in the Siegel Tukey test to adjust for tied ranks and achieve more accurate results. This approach is distribution-free and suitable for small sizes. Also comparisons with the conventional runs test shows the superiority of the proposed approach under the null hypothesis of randomness in the occurrence of type 1 elements.

We study general coordinate-wise MCMC schemes (such as Metropolis-within-Gibbs samplers), which are commonly used to fit Bayesian non-conjugate hierarchical models. We relate their convergence properties to the ones of the corresponding (potentially not implementable) Gibbs sampler through the notion of conditional conductance. This allows us to study the performances of popular Metropolis-within-Gibbs schemes for non-conjugate hierarchical models, in high-dimensional regimes where both number of datapoints and parameters increase. Given random data-generating assumptions, we establish dimension-free convergence results, which are in close accordance with numerical evidences. Applications to Bayesian models for binary regression with unknown hyperparameters and discretely observed diffusions are also discussed. Motivated by such statistical applications, auxiliary results of independent interest on approximate conductances and perturbation of Markov operators are provided.

We present a high-order surface quadrature (HOSQ) for accurately approximating regular surface integrals on closed surfaces. The initial step of our approach rests on exploiting square-squeezing--a homeomorphic bilinear square-simplex transformation, re-parametrizing any surface triangulation to a quadrilateral mesh. For each resulting quadrilateral domain we interpolate the geometry by tensor polynomials in Chebyshev--Lobatto grids. Posterior the tensor-product Clenshaw-Curtis quadrature is applied to compute the resulting integral. We demonstrate efficiency, fast runtime performance, high-order accuracy, and robustness for complex geometries.

In logistic regression modeling, Firth's modified estimator is widely used to address the issue of data separation, which results in the nonexistence of the maximum likelihood estimate. Firth's modified estimator can be formulated as a penalized maximum likelihood estimator in which Jeffreys' prior is adopted as the penalty term. Despite its widespread use in practice, the formal verification of the corresponding estimate's existence has not been established. In this study, we establish the existence theorem of Firth's modified estimate in binomial logistic regression models, assuming only the full column rankness of the design matrix. We also discuss other binomial regression models obtained through alternating link functions and prove the existence of similar penalized maximum likelihood estimates for such models.

Confidence intervals based on the central limit theorem (CLT) are a cornerstone of classical statistics. Despite being only asymptotically valid, they are ubiquitous because they permit statistical inference under weak assumptions and can often be applied to problems even when nonasymptotic inference is impossible. This paper introduces time-uniform analogues of such asymptotic confidence intervals, adding to the literature on confidence sequences (CS) -- sequences of confidence intervals that are uniformly valid over time -- which provide valid inference at arbitrary stopping times and incur no penalties for "peeking" at the data, unlike classical confidence intervals which require the sample size to be fixed in advance. Existing CSs in the literature are nonasymptotic, enjoying finite-sample guarantees but not the aforementioned broad applicability of asymptotic confidence intervals. This work provides a definition for "asymptotic CSs" and a general recipe for deriving them. Asymptotic CSs forgo nonasymptotic validity for CLT-like versatility and (asymptotic) time-uniform guarantees. While the CLT approximates the distribution of a sample average by that of a Gaussian for a fixed sample size, we use strong invariance principles (stemming from the seminal 1960s work of Strassen) to uniformly approximate the entire sample average process by an implicit Gaussian process. As an illustration, we derive asymptotic CSs for the average treatment effect in observational studies (for which nonasymptotic bounds are essentially impossible to derive even in the fixed-time regime) as well as randomized experiments, enabling causal inference in sequential environments.

This work presents a comparative review and classification between some well-known thermodynamically consistent models of hydrogel behavior in a large deformation setting, specifically focusing on solvent absorption/desorption and its impact on mechanical deformation and network swelling. The proposed discussion addresses formulation aspects, general mathematical classification of the governing equations, and numerical implementation issues based on the finite element method. The theories are presented in a unified framework demonstrating that, despite not being evident in some cases, all of them follow equivalent thermodynamic arguments. A detailed numerical analysis is carried out where Taylor-Hood elements are employed in the spatial discretization to satisfy the inf-sup condition and to prevent spurious numerical oscillations. The resulting discrete problems are solved using the FEniCS platform through consistent variational formulations, employing both monolithic and staggered approaches. We conduct benchmark tests on various hydrogel structures, demonstrating that major differences arise from the chosen volumetric response of the hydrogel. The significance of this choice is frequently underestimated in the state-of-the-art literature but has been shown to have substantial implications on the resulting hydrogel behavior.

This study introduces a reduced-order model (ROM) for analyzing the transient diffusion-deformation of hydrogels. The full-order model (FOM) describing hydrogel transient behavior consists of a coupled system of partial differential equations in which chemical potential and displacements are coupled. This system is formulated in a monolithic fashion and solved using the Finite Element Method (FEM). The ROM employs proper orthogonal decomposition as a model order reduction approach. We test the ROM performance through benchmark tests on hydrogel swelling behavior and a case study simulating co-axial printing. Finally, we embed the ROM into an optimization problem to identify the model material parameters of the coupled problem using full-field data. We verify that the ROM can predict hydrogels' diffusion-deformation evolution and material properties, significantly reducing computation time compared to the FOM. The results demonstrate the ROM's accuracy and computational efficiency. This work paths the way towards advanced practical applications of ROMs, e.g., in the context of feedback error control in hydrogel 3D printing.

In this paper, a class of high-order methods to numerically solve Functional Differential Equations with Piecewise Continuous Arguments (FDEPCAs) is discussed. The framework stems from the expansion of the vector field associated with the reference differential equation along the shifted and scaled Legendre polynomial orthonormal basis, working on a suitable extension of Hamiltonian Boundary Value Methods. Within the design of the methods, a proper generalization of the perturbation results coming from the field of ordinary differential equations is considered, with the aim of handling the case of FDEPCAs. The error analysis of the devised family of methods is performed, while a few numerical tests on Hamiltonian FDEPCAs are provided, to give evidence to the theoretical findings and show the effectiveness of the obtained resolution strategy.

This paper explores the residual based a posteriori error estimations for the generalized Burgers-Huxley equation (GBHE) featuring weakly singular kernels. Initially, we present a reliable and efficient error estimator for both the stationary GBHE and the semi-discrete GBHE with memory, utilizing the discontinuous Galerkin finite element method (DGFEM) in spatial dimensions. Additionally, employing backward Euler and Crank Nicolson discretization in the temporal domain and DGFEM in spatial dimensions, we introduce an estimator for the fully discrete GBHE, taking into account the influence of past history. The paper also establishes optimal $L^2$ error estimates for both the stationary GBHE and GBHE. Ultimately, we validate the effectiveness of the proposed error estimator through numerical results, demonstrating its efficacy in an adaptive refinement strategy.

Solutions to many important partial differential equations satisfy bounds constraints, but approximations computed by finite element or finite difference methods typically fail to respect the same conditions. Chang and Nakshatrala enforce such bounds in finite element methods through the solution of variational inequalities rather than linear variational problems. Here, we provide a theoretical justification for this method, including higher-order discretizations. We prove an abstract best approximation result for the linear variational inequality and estimates showing that bounds-constrained polynomials provide comparable approximation power to standard spaces. For any unconstrained approximation to a function, there exists a constrained approximation which is comparable in the $W^{1,p}$ norm. In practice, one cannot efficiently represent and manipulate the entire family of bounds-constrained polynomials, but applying bounds constraints to the coefficients of a polynomial in the Bernstein basis guarantees those constraints on the polynomial. Although our theoretical results do not guaruntee high accuracy for this subset of bounds-constrained polynomials, numerical results indicate optimal orders of accuracy for smooth solutions and sharp resolution of features in convection-diffusion problems, all subject to bounds constraints.

北京阿比特科技有限公司