亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Emergency shelters, which reflect the city's ability to respond to and deal with major public emergencies to a certain extent, are essential to a modern urban emergency management system. This paper is based on spatial analysis methods, using Analytic Hierarchy Process to analyze the suitability of the 28 emergency shelters in Wuhan City. The Technique for Order Preference by Similarity to an Ideal Solution is further used to evaluate the accommodation capacity of emergency shelters in central urban areas, which provides a reference for the optimization of existing shelters and the site selection of new shelters, and provides a basis for improving the service capacity of shelters. The results show that the overall situation of emergency shelters in Wuhan is good, with 96\% of the places reaching the medium level or above, but the suitability level needs to be further improved, especially the effectiveness and accessibility. Among the seven central urban areas in Wuhan, Hongshan District has the strongest accommodation capacity while Jianghan District has the weakest, with noticeable differences.

相關內容

**2016年年度應用** * 無需鍛煉設備,每天(tian)只需幾分鐘(zhong)時(shi)間(jian) * 趣(qu)味(wei)成就和(he)獎勵不斷鼓勵你 * 基(ji)于《紐約時(shi)報雜(za)志》報道的7分鐘(zhong)科學(xue)鍛煉文章(zhang)

A sequence is called $C$-finite if it satisfies a linear recurrence with constant coefficients. We study sequences which satisfy a linear recurrence with $C$-finite coefficients. Recently, it was shown that such $C^2$-finite sequences satisfy similar closure properties as $C$-finite sequences. In particular, they form a difference ring. In this paper we present new techniques for performing these closure properties of $C^2$-finite sequences. These methods also allow us to derive order bounds which were not known before. Additionally, they provide more insight in the effectiveness of these computations. The results are based on the exponent lattice of algebraic numbers. We present an iterative algorithm which can be used to compute bases of such lattices.

Event prediction is the ability of anticipating future events, i.e., future real-world occurrences, and aims to support the user in deciding on actions that change future events towards a desired state. An event prediction method learns the relation between features of past events and future events. It is applied to newly observed events to predict corresponding future events that are evaluated with respect to the user's desired future state. If the predicted future events do not comply with this state, actions are taken towards achieving desirable future states. Evidently, event prediction is valuable in many application domains such as business and natural disasters. The diversity of application domains results in a diverse range of methods that are scattered across various research areas which, in turn, use different terminology for event prediction methods. Consequently, sharing methods and knowledge for developing future event prediction methods is restricted. To facilitate knowledge sharing on account of a comprehensive classification, integration, and assessment of event prediction methods, we combine taxonomies and take a systems perspective to integrate event prediction methods into a single system, elicit requirements and assess existing work with respect to the requirements. Based on the assessment, we identify open challenges and discuss future research directions.

Industrial process tomography (IPT) is a specialized imaging technique widely used in industrial scenarios for process supervision and control. Today, augmented/mixed reality (AR/MR) is increasingly being adopted in many industrial occasions, even though there is still an obvious gap when it comes to IPT. To bridge this gap, we propose the first systematic AR approach using optical see-through (OST) head mounted displays (HMDs) with comparative evaluation for domain users towards IPT visualization analysis. The proof-of-concept was demonstrated by a within-subject user study (n=20) with counterbalancing design. Both qualitative and quantitative measurements were investigated. The results showed that our AR approach outperformed conventional settings for IPT data visualization analysis in bringing higher understandability, reduced task completion time, lower error rates for domain tasks, increased usability with enhanced user experience, and a better recommendation level. We summarize the findings and suggest future research directions for benefiting IPT users with AR/MR.

Algebraic effects & handlers are a modular approach for modeling side-effects in functional programming. Their syntax is defined in terms of a signature of effectful operations, encoded as a functor, that are plugged into the free monad; their denotational semantics is defined by fold-style handlers that only interpret their part of the syntax and forward the rest. However, not all effects are algebraic: some need to access an internal computation. For example, scoped effects distinguish between a computation in scope and out of scope; parallel effects parallellize over a computation, latent effects defer a computation. Separate definitions have been proposed for these higher-order effects and their corresponding handlers, often leading to expedient and complex monad definitions. In this work we propose a generic framework for higher-order effects, generalizing algebraic effects & handlers: a generic free monad with higher-order effect signatures and a corresponding interpreter. Specializing this higher-order syntax leads to various definitions of previously defined (scoped, parallel, latent) and novel (writer, bracketing) effects. Furthermore, we formally show our framework theoretically correct, also putting different effect instances on formal footing; a significant contribution for parallel, latent, writer and bracketing effects.

Along with the massive growth of the Internet from the 1990s until now, various innovative technologies have been created to bring users breathtaking experiences with more virtual interactions in cyberspace. Many virtual environments with thousands of services and applications, from social networks to virtual gaming worlds, have been developed with immersive experience and digital transformation, but most are incoherent instead of being integrated into a platform. In this context, metaverse, a term formed by combining meta and universe, has been introduced as a shared virtual world that is fueled by many emerging technologies, such as fifth-generation networks and beyond, virtual reality, and artificial intelligence (AI). Among such technologies, AI has shown the great importance of processing big data to enhance immersive experience and enable human-like intelligence of virtual agents. In this survey, we make a beneficial effort to explore the role of AI in the foundation and development of the metaverse. We first deliver a preliminary of AI, including machine learning algorithms and deep learning architectures, and its role in the metaverse. We then convey a comprehensive investigation of AI-based methods concerning six technical aspects that have potentials for the metaverse: natural language processing, machine vision, blockchain, networking, digital twin, and neural interface, and being potential for the metaverse. Subsequently, several AI-aided applications, such as healthcare, manufacturing, smart cities, and gaming, are studied to be deployed in the virtual worlds. Finally, we conclude the key contribution of this survey and open some future research directions in AI for the metaverse.

Artificial intelligence (AI) has become a part of everyday conversation and our lives. It is considered as the new electricity that is revolutionizing the world. AI is heavily invested in both industry and academy. However, there is also a lot of hype in the current AI debate. AI based on so-called deep learning has achieved impressive results in many problems, but its limits are already visible. AI has been under research since the 1940s, and the industry has seen many ups and downs due to over-expectations and related disappointments that have followed. The purpose of this book is to give a realistic picture of AI, its history, its potential and limitations. We believe that AI is a helper, not a ruler of humans. We begin by describing what AI is and how it has evolved over the decades. After fundamentals, we explain the importance of massive data for the current mainstream of artificial intelligence. The most common representations for AI, methods, and machine learning are covered. In addition, the main application areas are introduced. Computer vision has been central to the development of AI. The book provides a general introduction to computer vision, and includes an exposure to the results and applications of our own research. Emotions are central to human intelligence, but little use has been made in AI. We present the basics of emotional intelligence and our own research on the topic. We discuss super-intelligence that transcends human understanding, explaining why such achievement seems impossible on the basis of present knowledge,and how AI could be improved. Finally, a summary is made of the current state of AI and what to do in the future. In the appendix, we look at the development of AI education, especially from the perspective of contents at our own university.

Meta-learning has gained wide popularity as a training framework that is more data-efficient than traditional machine learning methods. However, its generalization ability in complex task distributions, such as multimodal tasks, has not been thoroughly studied. Recently, some studies on multimodality-based meta-learning have emerged. This survey provides a comprehensive overview of the multimodality-based meta-learning landscape in terms of the methodologies and applications. We first formalize the definition of meta-learning and multimodality, along with the research challenges in this growing field, such as how to enrich the input in few-shot or zero-shot scenarios and how to generalize the models to new tasks. We then propose a new taxonomy to systematically discuss typical meta-learning algorithms combined with multimodal tasks. We investigate the contributions of related papers and summarize them by our taxonomy. Finally, we propose potential research directions for this promising field.

Human-in-the-loop aims to train an accurate prediction model with minimum cost by integrating human knowledge and experience. Humans can provide training data for machine learning applications and directly accomplish some tasks that are hard for computers in the pipeline with the help of machine-based approaches. In this paper, we survey existing works on human-in-the-loop from a data perspective and classify them into three categories with a progressive relationship: (1) the work of improving model performance from data processing, (2) the work of improving model performance through interventional model training, and (3) the design of the system independent human-in-the-loop. Using the above categorization, we summarize major approaches in the field, along with their technical strengths/ weaknesses, we have simple classification and discussion in natural language processing, computer vision, and others. Besides, we provide some open challenges and opportunities. This survey intends to provide a high-level summarization for human-in-the-loop and motivates interested readers to consider approaches for designing effective human-in-the-loop solutions.

Recommender systems exploit interaction history to estimate user preference, having been heavily used in a wide range of industry applications. However, static recommendation models are difficult to answer two important questions well due to inherent shortcomings: (a) What exactly does a user like? (b) Why does a user like an item? The shortcomings are due to the way that static models learn user preference, i.e., without explicit instructions and active feedback from users. The recent rise of conversational recommender systems (CRSs) changes this situation fundamentally. In a CRS, users and the system can dynamically communicate through natural language interactions, which provide unprecedented opportunities to explicitly obtain the exact preference of users. Considerable efforts, spread across disparate settings and applications, have been put into developing CRSs. Existing models, technologies, and evaluation methods for CRSs are far from mature. In this paper, we provide a systematic review of the techniques used in current CRSs. We summarize the key challenges of developing CRSs into five directions: (1) Question-based user preference elicitation. (2) Multi-turn conversational recommendation strategies. (3) Dialogue understanding and generation. (4) Exploitation-exploration trade-offs. (5) Evaluation and user simulation. These research directions involve multiple research fields like information retrieval (IR), natural language processing (NLP), and human-computer interaction (HCI). Based on these research directions, we discuss some future challenges and opportunities. We provide a road map for researchers from multiple communities to get started in this area. We hope this survey helps to identify and address challenges in CRSs and inspire future research.

Transfer learning aims at improving the performance of target learners on target domains by transferring the knowledge contained in different but related source domains. In this way, the dependence on a large number of target domain data can be reduced for constructing target learners. Due to the wide application prospects, transfer learning has become a popular and promising area in machine learning. Although there are already some valuable and impressive surveys on transfer learning, these surveys introduce approaches in a relatively isolated way and lack the recent advances in transfer learning. As the rapid expansion of the transfer learning area, it is both necessary and challenging to comprehensively review the relevant studies. This survey attempts to connect and systematize the existing transfer learning researches, as well as to summarize and interpret the mechanisms and the strategies in a comprehensive way, which may help readers have a better understanding of the current research status and ideas. Different from previous surveys, this survey paper reviews over forty representative transfer learning approaches from the perspectives of data and model. The applications of transfer learning are also briefly introduced. In order to show the performance of different transfer learning models, twenty representative transfer learning models are used for experiments. The models are performed on three different datasets, i.e., Amazon Reviews, Reuters-21578, and Office-31. And the experimental results demonstrate the importance of selecting appropriate transfer learning models for different applications in practice.

北京阿比特科技有限公司