亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Tame functions are a class of nonsmooth, nonconvex functions, which feature in a wide range of applications: functions encountered in the training of deep neural networks with all common activations, value functions of mixed-integer programs, or wave functions of small molecules. We consider approximating tame functions with piecewise polynomial functions. We bound the quality of approximation of a tame function by a piecewise polynomial function with a given number of segments on any full-dimensional cube. We also present the first mixed-integer programming formulation of piecewise polynomial regression. Together, these can be used to estimate tame functions. We demonstrate promising computational results.

相關內容

Large language models (LLMs) can be leveraged to help with writing formulas in spreadsheets, but resources on these formulas are scarce, impacting both the base performance of pre-trained models and limiting the ability to fine-tune them. Given a corpus of formulas, we can use a(nother) model to generate synthetic natural language utterances for fine-tuning. However, it is important to validate whether the NL generated by the LLM is indeed accurate to be beneficial for fine-tuning. In this paper, we provide empirical results on the impact of validating these synthetic training examples with surrogate objectives that evaluate the accuracy of the synthetic annotations. We demonstrate that validation improves performance over raw data across four models (2 open and 2 closed weight). Interestingly, we show that although validation tends to prune more challenging examples, it increases the complexity of problems that models can solve after being fine-tuned on validated data.

Learning dynamics, which describes how the learning of specific training examples influences the model's prediction of other examples, give us a powerful tool for understanding the behavior of deep learning systems. We study the learning dynamics of large language models during finetuning, by analyzing the step-wise decomposition and accumulated influence among different responses. Our framework allows a uniform interpretation of many interesting observations about the training of popular algorithms for both instruction tuning and preference tuning. The analysis not only explains where the benefits of these methods come from but also inspires a simple, effective method to further improve the alignment performance. Code for experiments is available at //github.com/Joshua-Ren/Learning_dynamics_LLM.

Probit models are useful for modeling correlated discrete responses in many disciplines, including discrete choice data in economics. However, the Gaussian latent variable feature of probit models coupled with identification constraints pose significant computational challenges for its estimation and inference, especially when the dimension of the discrete response variable is large. In this paper, we propose a computationally efficient Expectation-Maximization (EM) algorithm for estimating large probit models. Our work is distinct from existing methods in two important aspects. First, instead of simulation or sampling methods, we apply and customize expectation propagation (EP), a deterministic method originally proposed for approximate Bayesian inference, to estimate moments of the truncated multivariate normal (TMVN) in the E (expectation) step. Second, we take advantage of a symmetric identification condition to transform the constrained optimization problem in the M (maximization) step into a one-dimensional problem, which is solved efficiently using Newton's method instead of off-the-shelf solvers. Our method enables the analysis of correlated choice data in the presence of more than 100 alternatives, which is a reasonable size in modern applications, such as online shopping and booking platforms, but has been difficult in practice with probit models. We apply our probit estimation method to study ordering effects in hotel search results on Expedia.com.

Quantum communication systems support unique applications in the form of distributed quantum computing, distributed quantum sensing, and several cryptographic protocols. The main enabler in these communication systems is an efficient infrastructure that is capable to transport unknown quantum states with high rate and fidelity. This feat requires a new approach to communication system design which efficiently exploits the available physical layer resources, while respecting the limitations and principles of quantum information. Despite the fundamental differences between the classic and quantum worlds, there exist universal communication concepts that may proven beneficial in quantum communication systems as well. In this survey, the distinctive aspects of physical layer quantum communications are highlighted in a attempt to draw commonalities and divergences between classic and quantum communications. More specifically, we begin by overviewing the quantum channels and use cases over diverse optical propagation media, shedding light on the concepts of crosstalk and interference. Subsequently, we survey quantum sources, detectors, channels and modulation techniques. More importantly, we discuss and analyze spatial multiplexing techniques, such as coherent control, multiplexing, diversity and MIMO. Finally, we identify synergies between the two communication technologies and grand open challenges that can be pivotal in the development of next-generation quantum communication systems.

Metamaterials with functional responses, such as wave-based responses or deformation-induced property variation under external stimuli, can exhibit varying properties or functionalities under different conditions. Herein, we aim at rapid inverse design of these metamaterials to meet target qualitative functional behaviors. This inverse problem is challenging due to its intractability and the existence of non-unique solutions. Past works mainly focus on deep-learning-based methods that are data-demanding, require time-consuming training and hyperparameter tuning, and are non-interpretable. To overcome these limitations, we propose the Random-forest-based Interpretable Generative Inverse Design (RIGID), an iteration-free, single-shot inverse design method to achieve the fast generation of metamaterial designs with on-demand functional behaviors. Unlike most existing methods, by exploiting the interpretability of the random forest, we eliminate the need to train an inverse model mapping responses to designs. Based on the likelihood of target satisfaction derived from the trained forward model, one can sample design solutions using Markov chain Monte Carlo methods. The RIGID method therefore functions as a generative model that captures the conditional distribution of satisfying solutions given a design target. We demonstrate the effectiveness and efficiency of RIGID on both acoustic and optical metamaterial design problems where only small datasets (less than 250 training samples) are available. Synthetic design problems are created to further illustrate and validate the mechanism of likelihood estimation in RIGID. This work offers a new perspective on solving on-demand inverse design problems, showcasing the potential for incorporating interpretable machine learning into generative design and eliminating its large data requirement.

Hashing functions, which are created to provide brief and erratic digests for the message entered, are the primary cryptographic primitives used in blockchain networks. Hashing is employed in blockchain networks to create linked block lists, which offer safe and secure distributed repository storage for critical information. Due to the unique nature of the hash search problem in blockchain networks, the most parallelization of calculations is possible. This technical report presents a performance evaluation of three popular hashing algorithms Blake3, SHA-256, and SHA-512. These hashing algorithms are widely used in various applications, such as digital signatures, message authentication, and password storage. It then discusses the performance metrics used to evaluate the algorithms, such as hash rate/throughput and memory usage. The evaluation is conducted on a range of hardware platforms, including desktop and VMs. The evaluation includes synthetic benchmarks. The results of the evaluation show that Blake3 generally outperforms both SHA-256 and SHA-512 in terms of throughput and latency. However, the performance advantage of Blake3 varies depending on the specific hardware platform and the size of the input data. The report concludes with recommendations for selecting the most suitable hashing algorithm for a given application, based on its performance requirements and security needs. The evaluation results can also inform future research and development efforts to improve the performance and security of hashing algorithms.

Most recent unsupervised non-rigid 3D shape matching methods are based on the functional map framework due to its efficiency and superior performance. Nevertheless, respective methods struggle to obtain spatially smooth pointwise correspondences due to the lack of proper regularisation. In this work, inspired by the success of message passing on graphs, we propose a synchronous diffusion process which we use as regularisation to achieve smoothness in non-rigid 3D shape matching problems. The intuition of synchronous diffusion is that diffusing the same input function on two different shapes results in consistent outputs. Using different challenging datasets, we demonstrate that our novel regularisation can substantially improve the state-of-the-art in shape matching, especially in the presence of topological noise.

Structural equation models (SEMs) are commonly used to study the structural relationship between observed variables and latent constructs. Recently, Bayesian fitting procedures for SEMs have received more attention thanks to their potential to facilitate the adoption of more flexible model structures, and variational approximations have been shown to provide fast and accurate inference for Bayesian analysis of SEMs. However, the application of variational approximations is currently limited to very simple, elemental SEMs. We develop mean-field variational Bayes algorithms for two SEM formulations for data that present non-Gaussian features such as skewness and multimodality. The proposed models exploit the use of mixtures of Gaussians, include covariates for the analysis of latent traits and consider missing data. We also examine two variational information criteria for model selection that are straightforward to compute in our variational inference framework. The performance of the MFVB algorithms and information criteria is investigated in a simulated data study and a real data application.

As artificial intelligence (AI) models continue to scale up, they are becoming more capable and integrated into various forms of decision-making systems. For models involved in moral decision-making, also known as artificial moral agents (AMA), interpretability provides a way to trust and understand the agent's internal reasoning mechanisms for effective use and error correction. In this paper, we provide an overview of this rapidly-evolving sub-field of AI interpretability, introduce the concept of the Minimum Level of Interpretability (MLI) and recommend an MLI for various types of agents, to aid their safe deployment in real-world settings.

It is always well believed that modeling relationships between objects would be helpful for representing and eventually describing an image. Nevertheless, there has not been evidence in support of the idea on image description generation. In this paper, we introduce a new design to explore the connections between objects for image captioning under the umbrella of attention-based encoder-decoder framework. Specifically, we present Graph Convolutional Networks plus Long Short-Term Memory (dubbed as GCN-LSTM) architecture that novelly integrates both semantic and spatial object relationships into image encoder. Technically, we build graphs over the detected objects in an image based on their spatial and semantic connections. The representations of each region proposed on objects are then refined by leveraging graph structure through GCN. With the learnt region-level features, our GCN-LSTM capitalizes on LSTM-based captioning framework with attention mechanism for sentence generation. Extensive experiments are conducted on COCO image captioning dataset, and superior results are reported when comparing to state-of-the-art approaches. More remarkably, GCN-LSTM increases CIDEr-D performance from 120.1% to 128.7% on COCO testing set.

北京阿比特科技有限公司