We observe $n$ pairs of independent random variables $X_{1}=(W_{1},Y_{1}),\ldots,X_{n}=(W_{n},Y_{n})$ and assume, although this might not be true, that for each $i\in\{1,\ldots,n\}$, the conditional distribution of $Y_{i}$ given $W_{i}$ belongs to a given exponential family with real parameter $\theta_{i}^{\star}=\boldsymbol{\theta}^{\star}(W_{i})$ the value of which is an unknown function $\boldsymbol{\theta}^{\star}$ of the covariate $W_{i}$. Given a model $\boldsymbol{\overline\Theta}$ for $\boldsymbol{\theta}^{\star}$, we propose an estimator $\boldsymbol{\widehat \theta}$ with values in $\boldsymbol{\overline\Theta}$ the construction of which is independent of the distribution of the $W_{i}$. We show that $\boldsymbol{\widehat \theta}$ possesses the properties of being robust to contamination, outliers and model misspecification. We establish non-asymptotic exponential inequalities for the upper deviations of a Hellinger-type distance between the true distribution of the data and the estimated one based on $\boldsymbol{\widehat \theta}$. We deduce a uniform risk bound for $\boldsymbol{\widehat \theta}$ over the class of H\"olderian functions and we prove the optimality of this bound up to a logarithmic factor. Finally, we provide an algorithm for calculating $\boldsymbol{\widehat \theta}$ when $\boldsymbol{\theta}^{\star}$ is assumed to belong to functional classes of low or medium dimensions (in a suitable sense) and, on a simulation study, we compare the performance of $\boldsymbol{\widehat \theta}$ to that of the MLE and median-based estimators. The proof of our main result relies on an upper bound, with explicit numerical constants, on the expectation of the supremum of an empirical process over a VC-subgraph class. This bound can be of independent interest.
We present a new finite-sample analysis of M-estimators of locations in $\mathbb{R}^d$ using the tool of the influence function. In particular, we show that the deviations of an M-estimator can be controlled thanks to its influence function (or its score function) and then, we use concentration inequality on M-estimators to investigate the robust estimation of the mean in high dimension in a corrupted setting (adversarial corruption setting) for bounded and unbounded score functions. For a sample of size $n$ and covariance matrix $\Sigma$, we attain the minimax speed $\sqrt{Tr(\Sigma)/n}+\sqrt{\|\Sigma\|_{op}\log(1/\delta)/n}$ with probability larger than $1-\delta$ in a heavy-tailed setting. One of the major advantages of our approach compared to others recently proposed is that our estimator is tractable and fast to compute even in very high dimension with a complexity of $O(nd\log(Tr(\Sigma)))$ where $n$ is the sample size and $\Sigma$ is the covariance matrix of the inliers. In practice, the code that we make available for this article proves to be very fast.
This paper deals with robust inference for parametric copula models. Estimation using Canonical Maximum Likelihood might be unstable, especially in the presence of outliers. We propose to use a procedure based on the Maximum Mean Discrepancy (MMD) principle. We derive non-asymptotic oracle inequalities, consistency and asymptotic normality of this new estimator. In particular, the oracle inequality holds without any assumption on the copula family, and can be applied in the presence of outliers or under misspecification. Moreover, in our MMD framework, the statistical inference of copula models for which there exists no density with respect to the Lebesgue measure on $[0,1]^d$, as the Marshall-Olkin copula, becomes feasible. A simulation study shows the robustness of our new procedures, especially compared to pseudo-maximum likelihood estimation. An R package implementing the MMD estimator for copula models is available.
We develop an \textit{a posteriori} error analysis for the time of the first occurrence of an event, specifically, the time at which a functional of the solution to a partial differential equation (PDE) first achieves a threshold value on a given time interval. This novel quantity of interest (QoI) differs from classical QoIs which are modeled as bounded linear (or nonlinear) functionals. Taylor's theorem and an adjoint-based \textit{a posteriori} analysis is used to derive computable and accurate error estimates for semi-linear parabolic and hyperbolic PDEs. The accuracy of the error estimates is demonstrated through numerical solutions of the one-dimensional heat equation and linearized shallow water equations (SWE), representing parabolic and hyperbolic cases, respectively.
The detection and estimation of sinusoids is a fundamental signal processing task for many applications related to sensing and communications. While algorithms have been proposed for this setting, quantization is a critical, but often ignored modeling effect. In wireless communications, estimation with low resolution data converters is relevant for reduced power consumption in wideband receivers. Similarly, low resolution sampling in imaging and spectrum sensing allows for efficient data collection. In this work, we propose SignalNet, a neural network architecture that detects the number of sinusoids and estimates their parameters from quantized in-phase and quadrature samples. We incorporate signal reconstruction internally as domain knowledge within the network to enhance learning and surpass traditional algorithms in mean squared error and Chamfer error. We introduce a worst-case learning threshold for comparing the results of our network relative to the underlying data distributions. This threshold provides insight into why neural networks tend to outperform traditional methods and into the learned relationships between the input and output distributions. In simulation, we find that our algorithm is always able to surpass the threshold for three-bit data but often cannot exceed the threshold for one-bit data. We use the learning threshold to explain, in the one-bit case, how our estimators learn to minimize the distributional loss, rather than learn features from the data.
We study the problem of generating a hyperplane tessellation of an arbitrary set $T$ in $\mathbb{R}^n$, ensuring that the Euclidean distance between any two points corresponds to the fraction of hyperplanes separating them up to a pre-specified error $\delta$. We focus on random gaussian tessellations with uniformly distributed shifts and derive sharp bounds on the number of hyperplanes $m$ that are required. Surprisingly, our lower estimates falsify the conjecture that $m\sim \ell_*^2(T)/\delta^2$, where $\ell_*^2(T)$ is the gaussian width of $T$, is optimal.
In this paper, we consider the widely used but not fully understood stochastic estimator based on moving average (SEMA), which only requires {\bf a general unbiased stochastic oracle}. We demonstrate the power of SEMA on a range of stochastic non-convex optimization problems. In particular, we analyze various stochastic methods (existing or newly proposed) based on the {\bf variance recursion property} of SEMA for three families of non-convex optimization, namely standard stochastic non-convex minimization, stochastic non-convex strongly-concave min-max optimization, and stochastic bilevel optimization. Our contributions include: (i) for standard stochastic non-convex minimization, we present a simple and intuitive proof of convergence for a family of Adam-style methods (including Adam, AMSGrad, AdaBound, etc.) with an increasing or large "momentum" parameter for the first-order moment, which gives an alternative yet more natural way to guarantee Adam converge; (ii) for stochastic non-convex strongly-concave min-max optimization, we present a single-loop primal-dual stochastic momentum and adaptive methods based on the moving average estimators and establish its oracle complexity of $O(1/\epsilon^4)$ without using a large mini-batch size, addressing a gap in the literature; (iii) for stochastic bilevel optimization, we present a single-loop stochastic method based on the moving average estimators and establish its oracle complexity of $\widetilde O(1/\epsilon^4)$ without computing the SVD of the Hessian matrix, improving state-of-the-art results. For all these problems, we also establish a variance diminishing result for the used stochastic gradient estimators.
In this work, we consider $d$-{\sc Hyperedge Estimation} and $d$-{\sc Hyperedge Sample} problem in a hypergraph $\cH(U(\cH),\cF(\cH))$ in the query complexity framework, where $U(\cH)$ denotes the set of vertices and $\cF(\cH)$ denotes the set of hyperedges. The oracle access to the hypergraph is called {\sc Colorful Independence Oracle} ({\sc CID}), which takes $d$ (non-empty) pairwise disjoint subsets of vertices $\dsubset \subseteq U(\cH)$ as input, and answers whether there exists a hyperedge in $\cH$ having (exactly) one vertex in each $A_i, i \in \{1,2,\ldots,d\}$. The problem of $d$-{\sc Hyperedge Estimation} and $d$-{\sc Hyperedge Sample} with {\sc CID} oracle access is important in its own right as a combinatorial problem. Also, Dell {\it{et al.}}~[SODA '20] established that {\em decision} vs {\em counting} complexities of a number of combinatorial optimization problems can be abstracted out as $d$-{\sc Hyperedge Estimation} problems with a {\sc CID} oracle access. The main technical contribution of the paper is an algorithm that estimates $m= \size{\cF(\cH)}$ with $\hat{m}$ such that { $$ \frac{1}{C_{d}\log^{d-1} n} \;\leq\; \frac{\hat{m}}{m} \;\leq\; C_{d} \log ^{d-1} n . $$ by using at most $C_{d}\log ^{d+2} n$ many {\sc CID} queries, where $n$ denotes the number of vertices in the hypergraph $\cH$ and $C_{d}$ is a constant that depends only on $d$}. Our result coupled with the framework of Dell {\it{et al.}}~[SODA '21] implies improved bounds for a number of fundamental problems.
Fueled by the call for formative assessments, diagnostic classification models (DCMs) have recently gained popularity in psychometrics. Despite their potential for providing diagnostic information that aids in classroom instruction and students' learning, empirical applications of DCMs to classroom assessments have been highly limited. This is partly because how DCMs with different estimation methods perform in small sample contexts is not yet well-explored. Hence, this study aims to investigate the performance of respondent classification and item parameter estimation with a comprehensive simulation design that resembles classroom assessments using different estimation methods. The key findings are the following: (1) although the marked difference in respondent classification accuracy was not observed among the maximum likelihood (ML), Bayesian, and nonparametric methods, the Bayesian method provided slightly more accurate respondent classification in parsimonious DCMs than the ML method, and in complex DCMs, the ML method yielded the slightly better result than the Bayesian method; (2) while item parameter recovery was poor in both Bayesian and ML methods, the Bayesian method exhibited unstable slip values owing to the multimodality of their posteriors under complex DCMs, and the ML method produced irregular estimates that appear to be well-estimated due to a boundary problem under parsimonious DCMs.
Moment methods are an important means of density estimation, but they are generally strongly dependent on the choice of feasible functions, which severely affects the performance. We propose a non-classical parameterization for density estimation using the sample moments, which does not require the choice of such functions. The parameterization is induced by the Kullback-Leibler distance, and the solution of it, which is proved to exist and be unique subject to simple prior that does not depend on data, can be obtained by convex optimization. Simulation results show the performance of the proposed estimator in estimating multi-modal densities which are mixtures of different types of functions.
Heatmap-based methods dominate in the field of human pose estimation by modelling the output distribution through likelihood heatmaps. In contrast, regression-based methods are more efficient but suffer from inferior performance. In this work, we explore maximum likelihood estimation (MLE) to develop an efficient and effective regression-based methods. From the perspective of MLE, adopting different regression losses is making different assumptions about the output density function. A density function closer to the true distribution leads to a better regression performance. In light of this, we propose a novel regression paradigm with Residual Log-likelihood Estimation (RLE) to capture the underlying output distribution. Concretely, RLE learns the change of the distribution instead of the unreferenced underlying distribution to facilitate the training process. With the proposed reparameterization design, our method is compatible with off-the-shelf flow models. The proposed method is effective, efficient and flexible. We show its potential in various human pose estimation tasks with comprehensive experiments. Compared to the conventional regression paradigm, regression with RLE bring 12.4 mAP improvement on MSCOCO without any test-time overhead. Moreover, for the first time, especially on multi-person pose estimation, our regression method is superior to the heatmap-based methods. Our code is available at //github.com/Jeff-sjtu/res-loglikelihood-regression