We present a new analytical and numerical framework for solution of Partial Differential Equations (PDEs) that is based on an exact transformation that moves the boundary constraints into the dynamics of the corresponding governing equation. The framework is based on a Partial Integral Equation (PIE) representation of PDEs, where a PDE equation is transformed into an equivalent PIE formulation that does not require boundary conditions on its solution state. The PDE-PIE framework allows for a development of a generalized PIE-Galerkin approximation methodology for a broad class of linear PDEs with non-constant coefficients governed by non-periodic boundary conditions, including, e.g., Dirichlet, Neumann and Robin boundaries. The significance of this result is that solution to almost any linear PDE can now be constructed in a form of an analytical approximation based on a series expansion using a suitable set of basis functions, such as, e.g., Chebyshev polynomials of the first kind, irrespective of the boundary conditions. In many cases involving homogeneous or simple time-dependent boundary inputs, an analytical integration in time is also possible. We present several PDE solution examples in one spatial variable implemented with the developed PIE-Galerkin methodology using both analytical and numerical integration in time. The developed framework can be naturally extended to multiple spatial dimensions and, potentially, to nonlinear problems.
We present a general family of subcell limiting strategies to construct robust high-order accurate nodal discontinuous Galerkin (DG) schemes. The main strategy is to construct compatible low order finite volume (FV) type discretizations that allow for convex blending with the high-order variant with the goal of guaranteeing additional properties, such as bounds on physical quantities and/or guaranteed entropy dissipation. For an implementation of this main strategy, four main ingredients are identified that may be combined in a flexible manner: (i) a nodal high-order DG method on Legendre-Gauss-Lobatto nodes, (ii) a compatible robust subcell FV scheme, (iii) a convex combination strategy for the two schemes, which can be element-wise or subcell-wise, and (iv) a strategy to compute the convex blending factors, which can be either based on heuristic troubled-cell indicators, or using ideas from flux-corrected transport methods. By carefully designing the metric terms of the subcell FV method, the resulting methods can be used on unstructured curvilinear meshes, are locally conservative, can handle strong shocks efficiently while directly guaranteeing physical bounds on quantities such as density, pressure or entropy. We further show that it is possible to choose the four ingredients to recover existing methods such as a provably entropy dissipative subcell shock-capturing approach or a sparse invariant domain preserving approach. We test the versatility of the presented strategies and mix and match the four ingredients to solve challenging simulation setups, such as the KPP problem (a hyperbolic conservation law with non-convex flux function), turbulent and hypersonic Euler simulations, and MHD problems featuring shocks and turbulence.
We study the use of inverse harmonic Rayleigh quotients with target for the stepsize selection in gradient methods for nonlinear unconstrained optimization problems. This provides not only an elegant and flexible framework to parametrize and reinterpret existing stepsize schemes, but also gives inspiration for new flexible and tunable families of steplengths. In particular, we analyze and extend the adaptive Barzilai-Borwein method to a new family of stepsizes. While this family exploits negative values for the target, we also consider positive targets. We present a convergence analysis for quadratic problems extending results by Dai and Liao (2002), and carry out experiments outlining the potential of the approaches.
Divergence-free discontinuous Galerkin (DG) finite element methods offer a suitable discretization for the pointwise divergence-free numerical solution of Borrvall and Petersson's model for the topology optimization of fluids in Stokes flow [Topology optimization of fluids in Stokes flow, International Journal for Numerical Methods in Fluids 41 (1) (2003) 77--107]. The convergence results currently found in literature only consider H^1-conforming discretizations for the velocity. In this work, we extend the numerical analysis of Papadopoulos and Suli to divergence-free DG methods with an interior penalty [I. P. A. Papadopoulos and E. Suli, Numerical analysis of a topology optimization problem for Stokes flow, arXiv preprint arXiv:2102.10408, (2021)]. We show that, given an isolated minimizer of the infinite-dimensional problem, there exists a sequence of DG finite element solutions, satisfying necessary first-order optimality conditions, that strongly converges to the minimizer.
The paper primarily addressed the problem of linear representation, invertibility, and construction of the compositional inverse for non-linear maps over finite fields. Though there is vast literature available for the invertibility of polynomials and construction of inverses of permutation polynomials over $\mathbb{F}$, this paper explores a completely new approach using the dual map defined through the Koopman operator. This helps define the linear representation of the non-linear map,, which helps translate the map's non-linear compositions to a linear algebraic framework. The linear representation, defined over the space of functions, naturally defines a notion of linear complexity for non-linear maps, which can be viewed as a measure of computational complexity associated with such maps. The framework of linear representation is then extended to parameter dependent maps over $\mathbb{F}$, and the conditions on parametric invertibility of such maps are established, leading to a construction of a parametric inverse map (under composition). It is shown that the framework can be extended to multivariate maps over $\mathbb{F}^n$, and the conditions are established for invertibility of such maps, and the inverse is constructed using the linear representation. Further, the problem of linear representation of a group generated by a finite set of permutation maps over $\mathbb{F}^n$ under composition is also solved by extending the theory of linear representation of a single map.
In this paper the singular Emden-Fowler equation of fractional order is introduced and a computational method is proposed for its numerical solution. For the approximation of the solutions we have used Boubaker polynomials and defined the formulation for its fractional derivative operational matrix. This tool was not used yet, and here introduced for the first time. The operational matrix of the Caputo fractional derivative tool converts these problems to a system of algebraic equations whose solutions are simple and easy to compute. Numerical examples are examined to prove the validity and the effectiveness of the proposed method to find approximate and precise solutions.
We consider the Cauchy problem for a second-order nonlinear evolution equation in a Hilbert space. This equation represents the abstract generalization of the Ball integro-differential equation. The general nonlinear case with respect to terms of the equation which include a square of a norm of a gradient is considered. A three-layer semi-discrete scheme is proposed in order to find an approximate solution. In this scheme, the approximation of nonlinear terms that are dependent on the gradient is carried out by using an integral mean. We show that the solution of the nonlinear discrete problem and its corresponding difference analogue of a first-order derivative is uniformly bounded. For the solution of the corresponding linear discrete problem, it is obtained high-order a priori estimates by using two-variable Chebyshev polynomials. Based on these estimates we prove the stability of the nonlinear discrete problem. For smooth solutions, we provide error estimates for the approximate solution. An iteration method is applied in order to find an approximate solution for each temporal step. The convergence of the iteration process is proved.
In this paper, we propose a Galerkin finite element method for the elliptic optimal control problem governed by the Riesz space-fractional PDEs on 2D domains with control variable being discretized by variational discretization technique. The optimality condition is derived and priori error estimates of control, costate and state variables are successfully established. Numerical test is carried out to illustrate the accuracy performance of this approach.
This paper is devoted to the numerical analysis of a piecewise constant discontinuous Galerkin method for time fractional subdiffusion problems. The regularity of weak solution is firstly established by using variational approach and Mittag-Leffler function. Then several optimal error estimates are derived with low regularity data. Finally, numerical experiments are conducted to verify the theoretical results.
The scope of this paper is the analysis and approximation of an optimal control problem related to the Allen-Cahn equation. A tracking functional is minimized subject to the Allen-Cahn equation using distributed controls that satisfy point-wise control constraints. First and second order necessary and sufficient conditions are proved. The lowest order discontinuous Galerkin - in time - scheme is considered for the approximation of the control to state and adjoint state mappings. Under a suitable restriction on maximum size of the temporal and spatial discretization parameters $k$, $h$ respectively in terms of the parameter $\epsilon$ that describes the thickness of the interface layer, a-priori estimates are proved with constants depending polynomially upon $1/ \epsilon$. Unlike to previous works for the uncontrolled Allen-Cahn problem our approach does not rely on a construction of an approximation of the spectral estimate, and as a consequence our estimates are valid under low regularity assumptions imposed by the optimal control setting. These estimates are also valid in cases where the solution and its discrete approximation do not satisfy uniform space-time bounds independent of $\epsilon$. These estimates and a suitable localization technique, via the second order condition (see \cite{Arada-Casas-Troltzsch_2002,Casas-Mateos-Troltzsch_2005,Casas-Raymond_2006,Casas-Mateos-Raymond_2007}), allows to prove error estimates for the difference between local optimal controls and their discrete approximation as well as between the associated state and adjoint state variables and their discrete approximations
This paper presents the convergence analysis of the spatial finite difference method (FDM) for the stochastic Cahn--Hilliard equation with Lipschitz nonlinearity and multiplicative noise. Based on fine estimates of the discrete Green function, we prove that both the spatial semi-discrete numerical solution and its Malliavin derivative have strong convergence order $1$. Further, by showing the negative moment estimates of the exact solution, we obtain that the density of the spatial semi-discrete numerical solution converges in $L^1(\mathbb R)$ to the exact one. Finally, we apply an exponential Euler method to discretize the spatial semi-discrete numerical solution in time and show that the temporal strong convergence order is nearly $\frac38$, where a difficulty we overcome is to derive the optimal H\"older continuity of the spatial semi-discrete numerical solution.