Given an integer partition of $n$, we consider the impartial combinatorial game LCTR in which moves consist of removing either the left column or top row of its Young diagram. We show that for both normal and mis\`ere play, the optimal strategy can consist mostly of mirroring the opponent's moves. We also establish that both LCTR and Downright are domestic as well as returnable, and on the other hand neither tame nor forced. For both games, those structural observations allow for computing the Sprague-Grundy value any position in $O(\log(n))$ time, assuming that the time unit allows for reading an integer, or performing a basic arithmetic operation. This improves on the previously known bound of $O(n)$ due to Ili\'c (2019). We also cover some other complexity measures of both games, such as state-space complexity, and number of leaves and nodes in the corresponding game tree.
This paper investigates the estimation of the interaction function for a class of McKean-Vlasov stochastic differential equations. The estimation is based on observations of the associated particle system at time $T$, considering the scenario where both the time horizon $T$ and the number of particles $N$ tend to infinity. Our proposed method recovers polynomial rates of convergence for the resulting estimator. This is achieved under the assumption of exponentially decaying tails for the interaction function. Additionally, we conduct a thorough analysis of the transform of the associated invariant density as a complex function, providing essential insights for our main results.
By using the stochastic particle method, the truncated Euler-Maruyama (TEM) method is proposed for numerically solving McKean-Vlasov stochastic differential equations (MV-SDEs), possibly with both drift and diffusion coefficients having super-linear growth in the state variable. Firstly, the result of the propagation of chaos in the L^q (q\geq 2) sense is obtained under general assumptions. Then, the standard 1/2-order strong convergence rate in the L^q sense of the proposed method corresponding to the particle system is derived by utilizing the stopping time analysis technique. Furthermore, long-time dynamical properties of MV-SDEs, including the moment boundedness, stability, and the existence and uniqueness of the invariant probability measure, can be numerically realized by the TEM method. Additionally, it is proven that the numerical invariant measure converges to the underlying one of MV-SDEs in the L^2-Wasserstein metric. Finally, the conclusions obtained in this paper are verified through examples and numerical simulations.
We consider the following problem that we call the Shortest Two Disjoint Paths problem: given an undirected graph $G=(V,E)$ with edge weights $w:E \rightarrow \mathbb{R}$, two terminals $s$ and $t$ in $G$, find two internally vertex-disjoint paths between $s$ and $t$ with minimum total weight. As shown recently by Schlotter and Seb\H{o} (2022), this problem becomes NP-hard if edges can have negative weights, even if the weight function is conservative, there are no cycles in $G$ with negative total weight. We propose a polynomial-time algorithm that solves the Shortest Two Disjoint Paths problem for conservative weights in the case when the negative-weight edges form a constant number of trees in $G$.
We develop and compare e-variables for testing whether $k$ samples of data are drawn from the same distribution, the alternative being that they come from different elements of an exponential family. We consider the GRO (growth-rate optimal) e-variables for (1) a `small' null inside the same exponential family, and (2) a `large' nonparametric null, as well as (3) an e-variable arrived at by conditioning on the sum of the sufficient statistics. (2) and (3) are efficiently computable, and extend ideas from Turner et al. [2021] and Wald [1947] respectively from Bernoulli to general exponential families. We provide theoretical and simulation-based comparisons of these e-variables in terms of their logarithmic growth rate, and find that for small effects all four e-variables behave surprisingly similarly; for the Gaussian location and Poisson families, e-variables (1) and (3) coincide; for Bernoulli, (1) and (2) coincide; but in general, whether (2) or (3) grows faster under the alternative is family-dependent. We furthermore discuss algorithms for numerically approximating (1).
In this paper, we provide a simple proof of a generalization of the Gauss-Lucas theorem. By using methods of D-companion matrix, we get the majorization relationship between the zeros of convex combinations of incomplete polynomials and an origin polynomial. Moreover, we prove that the set of all zeros of all convex combinations of incomplete polynomials coincides with the closed convex hull of zeros of the original polynomial. The location of zeros of convex combinations of incomplete polynomials is determined.
It is known that standard stochastic Galerkin methods encounter challenges when solving partial differential equations with high-dimensional random inputs, which are typically caused by the large number of stochastic basis functions required. It becomes crucial to properly choose effective basis functions, such that the dimension of the stochastic approximation space can be reduced. In this work, we focus on the stochastic Galerkin approximation associated with generalized polynomial chaos (gPC), and explore the gPC expansion based on the analysis of variance (ANOVA) decomposition. A concise form of the gPC expansion is presented for each component function of the ANOVA expansion, and an adaptive ANOVA procedure is proposed to construct the overall stochastic Galerkin system. Numerical results demonstrate the efficiency of our proposed adaptive ANOVA stochastic Galerkin method for both diffusion and Helmholtz problems.
We establish optimal error bounds on time-splitting methods for the nonlinear Schr\"odinger equation with low regularity potential and typical power-type nonlinearity $ f(\rho) = \rho^\sigma $, where $ \rho:=|\psi|^2 $ is the density with $ \psi $ the wave function and $ \sigma > 0 $ the exponent of the nonlinearity. For the first-order Lie-Trotter time-splitting method, optimal $ L^2 $-norm error bound is proved for $L^\infty$-potential and $ \sigma > 0 $, and optimal $H^1$-norm error bound is obtained for $ W^{1, 4} $-potential and $ \sigma \geq 1/2 $. For the second-order Strang time-splitting method, optimal $ L^2 $-norm error bound is established for $H^2$-potential and $ \sigma \geq 1 $, and optimal $H^1$-norm error bound is proved for $H^3$-potential and $ \sigma \geq 3/2 $ (or $\sigma = 1$). Compared to those error estimates of time-splitting methods in the literature, our optimal error bounds either improve the convergence rates under the same regularity assumptions or significantly relax the regularity requirements on potential and nonlinearity for optimal convergence orders. A key ingredient in our proof is to adopt a new technique called \textit{regularity compensation oscillation} (RCO), where low frequency modes are analyzed by phase cancellation, and high frequency modes are estimated by regularity of the solution. Extensive numerical results are reported to confirm our error estimates and to demonstrate that they are sharp.
In the present paper, we propose a block variant of the extended Hessenberg process for computing approximations of matrix functions and other problems producing large-scale matrices. Applications to the computation of a matrix function such as f(A)V, where A is an nxn large sparse matrix, V is an nxp block with p<<n, and f is a function are presented. Solving shifted linear systems with multiple right hand sides are also given. Computing approximations of these matrix problems appear in many scientific and engineering applications. Different numerical experiments are provided to show the effectiveness of the proposed method for these problems.
The generalized optimised Schwarz method proposed in [Claeys & Parolin, 2022] is a variant of the Despr\'es algorithm for solving harmonic wave problems where transmission conditions are enforced by means of a non-local exchange operator. We introduce and analyse an acceleration technique that significantly reduces the cost of applying this exchange operator without deteriorating the precision and convergence speed of the overall domain decomposition algorithm.
We study least-squares trace regression when the parameter is the sum of a $r$-low-rank matrix and a $s$-sparse matrix and a fraction $\epsilon$ of the labels is corrupted. For subgaussian distributions and feature-dependent noise, we highlight three needed design properties, each one derived from a different process inequality: a "product process inequality", "Chevet's inequality" and a "multiplier process inequality". These properties handle, simultaneously, additive decomposition, label contamination and design-noise interaction. They imply the near-optimality of a tractable estimator with respect to the effective dimensions $d_{eff,r}$ and $d_{eff,s}$ of the low-rank and sparse components, $\epsilon$ and the failure probability $\delta$. The near-optimal rate is $\mathsf{r}(n,d_{eff,r}) + \mathsf{r}(n,d_{eff,s}) + \sqrt{(1+\log(1/\delta))/n} + \epsilon\log(1/\epsilon)$, where $\mathsf{r}(n,d_{eff,r})+\mathsf{r}(n,d_{eff,s})$ is the optimal rate in average with no contamination. Our estimator is adaptive to $(s,r,\epsilon,\delta)$ and, for fixed absolute constant $c>0$, it attains the mentioned rate with probability $1-\delta$ uniformly over all $\delta\ge\exp(-cn)$. Without matrix decomposition, our analysis also entails optimal bounds for a robust estimator adapted to the noise variance. Our estimators are based on "sorted" versions of Huber's loss. We present simulations matching the theory. In particular, it reveals the superiority of "sorted" Huber's losses over the classical Huber's loss.