Perceived discrimination is common and consequential. Yet, little support is available to ease handling of these experiences. Addressing this gap, we report on a need-finding study to guide us in identifying relevant technologies and their requirements. Specifically, we examined unfolding experiences of perceived discrimination among college students and found factors to address in providing meaningful support. We used semi-structured retrospective interviews with 14 students to understand their perceptions, emotions, and coping in response to discriminatory behaviors within the prior ten-week period. These 14 students were among 90 who provided experience sampling reports of unfair treatment over the same ten-week period. We found that discrimination is more distressing if students face related academic and social struggles or when the incident triggers beliefs of inefficacy. We additionally identified patterns of effective coping. By grounding the findings in an extended stress processing framework, we offer a principled approach to intervention design, which we illustrate through incident-specific and proactive intervention paradigms.
In eDiscovery, a party to a lawsuit or similar action must search through available information to identify those documents and files that are relevant to the suit. Search efforts tend to identify less than 100% of the relevant documents and courts are frequently asked to adjudicate whether the search effort has been reasonable, or whether additional effort to find more of the relevant documents is justified. This article provides a method for estimating the probability that significant additional information will be found from extended effort. Modeling and two data sets indicate that the probability that facts/topics exist among the so-far unidentified documents that have not been observed in the identified documents is low for even moderate levels of Recall.
This is about the Minimum Description Length (MDL) principle applied to pattern mining. The length of this description is kept to the minimum. Mining patterns is a core task in data analysis and, beyond issues of efficient enumeration, the selection of patterns constitutes a major challenge. The MDL principle, a model selection method grounded in information theory, has been applied to pattern mining with the aim to obtain compact high-quality sets of patterns. After giving an outline of relevant concepts from information theory and coding, as well as of work on the theory behind the MDL and similar principles, we review MDL-based methods for mining various types of data and patterns. Finally, we open a discussion on some issues regarding these methods, and highlight currently active related data analysis problems.
Computer Vision (CV) classifiers which distinguish and detect nonverbal social human behavior and mental state can aid digital diagnostics and therapeutics for psychiatry and the behavioral sciences. While CV classifiers for traditional and structured classification tasks can be developed with standard machine learning pipelines for supervised learning consisting of data labeling, preprocessing, and training a convolutional neural network, there are several pain points which arise when attempting this process for behavioral phenotyping. Here, we discuss the challenges and corresponding opportunities in this space, including handling heterogeneous data, avoiding biased models, labeling massive and repetitive data sets, working with ambiguous or compound class labels, managing privacy concerns, creating appropriate representations, and personalizing models. We discuss current state-of-the-art research endeavors in CV such as data curation, data augmentation, crowdsourced labeling, active learning, reinforcement learning, generative models, representation learning, federated learning, and meta-learning. We highlight at least some of the machine learning advancements needed for imaging classifiers to detect human social cues successfully and reliably.
Mentorship in the AI community is crucial to maintaining and increasing diversity, especially with respect to fostering the academic growth of underserved students. While the research process itself is important, there is not sufficient emphasis on the submission, presentation, and publication process, which is a cause for concern given the meteoric rise of predatory scientific conferences, which are based on profit only and have little to no peer review. These conferences are a direct threat to integrity in science by promoting work with little to no scientific merit. However, they also threaten diversity in the AI community by marginalizing underrepresented groups away from legitimate conferences due to convenience and targeting mechanisms like e-mail invitations. Due to the importance of conference presentation in AI research, this very specific problem must be addressed through direct mentorship. In this work, we propose PreDefense, a mentorship program that seeks to guide underrepresented students through the scientific conference and workshop process, with an emphasis on choosing legitimate venues that align with the specific work that the students are focused in and preparing students of all backgrounds for future successful, integrous AI research careers.
In 1954, Alston S. Householder published Principles of Numerical Analysis, one of the first modern treatments on matrix decomposition that favored a (block) LU decomposition-the factorization of a matrix into the product of lower and upper triangular matrices. And now, matrix decomposition has become a core technology in machine learning, largely due to the development of the back propagation algorithm in fitting a neural network. The sole aim of this survey is to give a self-contained introduction to concepts and mathematical tools in numerical linear algebra and matrix analysis in order to seamlessly introduce matrix decomposition techniques and their applications in subsequent sections. However, we clearly realize our inability to cover all the useful and interesting results concerning matrix decomposition and given the paucity of scope to present this discussion, e.g., the separated analysis of the Euclidean space, Hermitian space, Hilbert space, and things in the complex domain. We refer the reader to literature in the field of linear algebra for a more detailed introduction to the related fields.
Human-in-the-loop aims to train an accurate prediction model with minimum cost by integrating human knowledge and experience. Humans can provide training data for machine learning applications and directly accomplish some tasks that are hard for computers in the pipeline with the help of machine-based approaches. In this paper, we survey existing works on human-in-the-loop from a data perspective and classify them into three categories with a progressive relationship: (1) the work of improving model performance from data processing, (2) the work of improving model performance through interventional model training, and (3) the design of the system independent human-in-the-loop. Using the above categorization, we summarize major approaches in the field, along with their technical strengths/ weaknesses, we have simple classification and discussion in natural language processing, computer vision, and others. Besides, we provide some open challenges and opportunities. This survey intends to provide a high-level summarization for human-in-the-loop and motivates interested readers to consider approaches for designing effective human-in-the-loop solutions.
AI in finance broadly refers to the applications of AI techniques in financial businesses. This area has been lasting for decades with both classic and modern AI techniques applied to increasingly broader areas of finance, economy and society. In contrast to either discussing the problems, aspects and opportunities of finance that have benefited from specific AI techniques and in particular some new-generation AI and data science (AIDS) areas or reviewing the progress of applying specific techniques to resolving certain financial problems, this review offers a comprehensive and dense roadmap of the overwhelming challenges, techniques and opportunities of AI research in finance over the past decades. The landscapes and challenges of financial businesses and data are firstly outlined, followed by a comprehensive categorization and a dense overview of the decades of AI research in finance. We then structure and illustrate the data-driven analytics and learning of financial businesses and data. The comparison, criticism and discussion of classic vs. modern AI techniques for finance are followed. Lastly, open issues and opportunities address future AI-empowered finance and finance-motivated AI research.
Over the past few years, we have seen fundamental breakthroughs in core problems in machine learning, largely driven by advances in deep neural networks. At the same time, the amount of data collected in a wide array of scientific domains is dramatically increasing in both size and complexity. Taken together, this suggests many exciting opportunities for deep learning applications in scientific settings. But a significant challenge to this is simply knowing where to start. The sheer breadth and diversity of different deep learning techniques makes it difficult to determine what scientific problems might be most amenable to these methods, or which specific combination of methods might offer the most promising first approach. In this survey, we focus on addressing this central issue, providing an overview of many widely used deep learning models, spanning visual, sequential and graph structured data, associated tasks and different training methods, along with techniques to use deep learning with less data and better interpret these complex models --- two central considerations for many scientific use cases. We also include overviews of the full design process, implementation tips, and links to a plethora of tutorials, research summaries and open-sourced deep learning pipelines and pretrained models, developed by the community. We hope that this survey will help accelerate the use of deep learning across different scientific domains.
Understanding latent user needs beneath shopping behaviors is critical to e-commercial applications. Without a proper definition of user needs in e-commerce, most industry solutions are not driven directly by user needs at current stage, which prevents them from further improving user satisfaction. Representing implicit user needs explicitly as nodes like "outdoor barbecue" or "keep warm for kids" in a knowledge graph, provides new imagination for various e- commerce applications. Backed by such an e-commerce knowledge graph, we propose a supervised learning algorithm to conceptualize user needs from their transaction history as "concept" nodes in the graph and infer those concepts for each user through a deep attentive model. Offline experiments demonstrate the effectiveness and stability of our model, and online industry strength tests show substantial advantages of such user needs understanding.
Cognitive task analysis (CTA) is a type of analysis in applied psychology aimed at eliciting and representing the knowledge and thought processes of domain experts. In CTA, often heavy human labor is involved to parse the interview transcript into structured knowledge (e.g., flowchart for different actions). To reduce human efforts and scale the process, automated CTA transcript parsing is desirable. However, this task has unique challenges as (1) it requires the understanding of long-range context information in conversational text; and (2) the amount of labeled data is limited and indirect---i.e., context-aware, noisy, and low-resource. In this paper, we propose a weakly-supervised information extraction framework for automated CTA transcript parsing. We partition the parsing process into a sequence labeling task and a text span-pair relation extraction task, with distant supervision from human-curated protocol files. To model long-range context information for extracting sentence relations, neighbor sentences are involved as a part of input. Different types of models for capturing context dependency are then applied. We manually annotate real-world CTA transcripts to facilitate the evaluation of the parsing tasks